skip to main content


Title: The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects: THE 17 MARCH 2013 STORM OBSERVATION SYNERGY
NSF-PAR ID:
10036159
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
121
Issue:
11
ISSN:
2169-9380
Page Range / eLocation ID:
10,880 to 10,897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The three‐dimensional computerized ionospheric tomography (3DCIT) technique is used to reconstruct the spatial distribution of storm‐enhanced density (SED) based on the global positioning system total electron content measurements over the North American area during the 17 March 2013 storm. The reconstruction results are carefully validated with observations from three ionosonde stations, the constellation observing system for meteorology, ionosphere, and climate (COSMIC) radio occultations, and the Millstone Hill incoherent scatter radar. The electron density profiles from the 3DCIT reconstruction show a good agreement with the ionosonde and COSMIC electron density profiles. The 3DCIT‐derived electron density difference between the storm day of 17 March and the quiet day of 16 March also captures the similar SED plume signature that was observed by the Millstone Hill incoherent scatter radar. The 3DCIT reconstruction allows us for the first time to unveil the 3‐D configuration of the SED plume and its spatiotemporal evolution. It was found that the SED plume first appeared around 400 km and then expanded downward to ~300 km as well as upward to ~500 km over the course of a 3‐hr period from 19 to 22 UT on 17 March. Our study also showed that the density enhancement within the SED plume occurred mostly above the storm timeFlayer peak height.

     
    more » « less
  2. Abstract

    Subauroral Polarization Streams (SAPS) are associated with closure of region 2 field‐aligned current (R2 FAC) through the low conductivity region. Although SAPS have often been studied from a magnetosphere‐ionosphere coupling perspective, recent observations suggest strong interaction also exists between SAPS and the thermosphere. Our study focuses on thermospheric wind driving and its impact on SAPS and R2 FAC during the 17 March 2013 geomagnetic storm using both observations and the physics‐based Rice Convection Model‐Coupled Thermosphere, Ionosphere, Plasmasphere, electrodynamics (RCM‐CTIPe) model that self‐consistently couples the magnetosphere‐ionosphere‐thermosphere system. Defense Meteorological Satellite Program (DMSP)‐18 and Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) satellite observations show that, as the storm progresses, sunward ion flows intensify and expand equatorward and are accompanied by strengthening of subauroral neutral winds with some delay. Our model successfully reproduces time evolution and overall structure of the sunward ion drift and neutral wind. A force term analysis is performed to investigate the momentum transfer to the neutrals from the ions. Contrary to previous studies showing that Coriolis force is the main driver of neutrals during storm time, we find that the ion drag is the largest force driving westward neutral wind in the SAPS region where the ion density is low in the trough region. Furthermore, simulations with and without the neutral wind dynamo effect are compared to quantify the effect of the neutral to plasma flow. The comparison shows that the self‐consistent active ionosphere thermosphere coupling increases the R2 FAC and the westward ion drift equatorward of the SAPS region by 20% and 40% by the flywheel effect, respectively.

     
    more » « less
  3. Abstract

    During geomagnetic storms and substorms, the magnetosphere and ionosphere are strongly coupled by precipitating magnetospheric electrons from the Earth's plasma sheet and driven by both magnetospheric and ionospheric processes. Magnetospheric wave activity initiates electron precipitation, and the ionosphere and upper atmosphere further facilitate this process by enhancing the value of precipitated energy fluxes via connection of two magnetically conjugate regions and multiple atmospheric reflections. This paper focuses on the resulting electron energy fluxes and affiliated height‐integrated Pedersen and Hall conductances in the auroral regions produced by multiple atmospheric reflections during the 17 March 2013 geomagnetic storm and their effects on the inner magnetospheric electric field and ring current. Our study is based on the magnetically and electrically self‐consistent Rice Convection Model‐Equilibrium of the inner magnetosphere with SuperThermal Electron Transport modified electron energy fluxes that take into account the electron energy interplay between the two magnetically conjugate ionospheres. SuperThermal Electron Transport‐modified energy flux in the Rice Convection Model‐Equilibrium leads to a significant difference in the global conductance pattern, ionospheric electric field formation, Birkeland current structure, ring current energization and its energy content, subauroral polarization drifts intensifications and their spatial locations, interchange instability redistribution, and overall energy interplay on the global scale.

     
    more » « less