skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution: Gracillariid leaf-mining moth phylogeny
Award ID(s):
1354585
PAR ID:
10036189
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
42
Issue:
1
ISSN:
0307-6970
Page Range / eLocation ID:
60 to 81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well‐defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof‐of‐concept workflow where previously reported diverse tyrosine‐derived plant natural products were mapped onto the plant tree of life. Plant chemical‐species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting “phylochemical” map confirmed several highly lineage‐specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine‐derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post‐mining processing can largely be automated with a low false‐positive rate, critical for generating a reliable phylochemical map. Although a high false‐negative rate remains a challenge, our study demonstrates that combining text mining with language model‐based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system‐level views of nature's millions of years of chemical experimentation. 
    more » « less