skip to main content


Title: Low rank approximation methods for MR fingerprinting with large scale dictionaries: Large Scale Low Rank MR Fingerprinting
NSF-PAR ID:
10037679
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
79
Issue:
4
ISSN:
0740-3194
Page Range / eLocation ID:
2392 to 2400
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardialT1,T2, andM0. The single‐slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice‐specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single‐slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision inT1andT2for both single‐slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardialT1andT2mapping compared with both single‐slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole‐heart simultaneousT1andT2quantification with cMRF.

     
    more » « less
  3. Purpose

    To introduce a quantitative tool that enables rapid forecasting of T1and T2parameter map errors due to normal and aliasing noise as a function of the MR fingerprinting (MRF) sequence, which can be used in sequence optimization.

    Theory and Methods

    The variances of normal noise and aliasing artifacts in the collected signal are related to the variances in T1and T2maps through derived quality factors. This analytical result is tested against the results of a Monte‐Carlo approach for analyzing MRF sequence encoding capability in the presence of aliasing noise, and verified with phantom experiments at 3 T. To further show the utility of our approach, our quality factors are used to find efficient MRF sequences for fewer repetitions.

    Results

    Experimental results verify the ability of our quality factors to rapidly assess the efficiency of an MRF sequence in the presence of both normal and aliasing noise. Quality factor assessment of MRF sequences is in agreement with the results of a Monte‐Carlo approach. Analysis of MRF parameter map errors from phantom experiments is consistent with the derived quality factors, with T1(T2) data yielding goodness of fit R2≥ 0.92 (0.80). In phantom and in vivo experiments, the efficient pulse sequence, determined through quality factor maximization, led to comparable or improved accuracy and precision relative to a longer sequence, demonstrating quality factor utility in MRF sequence design.

    Conclusion

    The here introduced quality factor framework allows for rapid analysis and optimization of MRF sequence design through T1and T2error forecasting.

     
    more » « less
  4. Purpose

    This work aims to develop an approach for simultaneous water–fat separation and myocardial T1and T2quantification based on the cardiac MR fingerprinting (cMRF) framework with rosette trajectories at 3T and 1.5T.

    Methods

    Two 15‐heartbeat cMRF sequences with different rosette trajectories designed for water–fat separation at 3T and 1.5T were implemented. Water T1and T2maps, water image, and fat image were generated with B0inhomogeneity correction using a B0map derived from the cMRF data themselves. The proposed water–fat separation rosette cMRF approach was validated in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI system phantom and water/oil phantoms. It was also applied for myocardial tissue mapping of healthy subjects at both 3T and 1.5T.

    Results

    Water T1and T2values measured using rosette cMRF in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom agreed well with the reference values. In the water/oil phantom, oil was well suppressed in the water images and vice versa. Rosette cMRF yielded comparable T1but 2~3 ms higher T2values in the myocardium of healthy subjects than the original spiral cMRF method. Epicardial fat deposition was also clearly shown in the fat images.

    Conclusion

    Rosette cMRF provides fat images along with myocardial T1and T2maps with significant fat suppression. This technique may improve visualization of the anatomical structure of the heart by separating water and fat and could provide value in diagnosing cardiac diseases associated with fibrofatty infiltration or epicardial fat accumulation. It also paves the way toward comprehensive myocardial tissue characterization in a single scan.

     
    more » « less