skip to main content

Title: Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publication Date:
NSF-PAR ID:
10037707
Journal Name:
Journal of Ecology
Volume:
106
Issue:
2
Page Range or eLocation-ID:
586 to 598
ISSN:
0022-0477
Publisher:
Wiley-Blackwell
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. Methods This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). Key Results We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specificmore »responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. Conclusions Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.« less
  2. 1. Spatial partitioning is a classic hypothesis to explain plant species coexistence, but evidence linking local environmental variation to spatial sorting, demography and species' traits is sparse. If co-occurring species' performance is optimized differently along environmental gradients because of trait variation, then spatial variation might facilitate coexistence. 2. We used a system of four naturally co-occurring species of Clarkia (Onagraceae) to ask whether distribution patchiness corresponds to variation in two environmental variables that contribute to hydrological variation. We then reciprocally sowed Clarkia into each patch type and measured demographic rates in the absence of congeneric competition. Species sorted in patches along one or both gradients, and in three of the four species, germination rate in the ‘home’ patch was higher than all other patches. 3. Spatially variable germination resulted in the same three species exhibiting the highest population growth rates in their home patches. 4. Species' trait values related to plant water use, as well as indicators of water stress in home patches, differed among species and corresponded to home patch attributes. However, post-germination survival did not vary among species or between patch types, and fecundity did not vary spatially. 5. Synthesis. Our research demonstrates the likelihood that within-community spatialmore »heterogeneity affects plant species coexistence, and presents novel evidence that differential performance in space is explained by what happens in the germination stage. Despite the seemingly obvious link between adult plant water-use and variation in the environment, our results distinguish the germination stage as important for spatially variable population performance.« less