skip to main content


Title: Alfvén wave-driven ionospheric mass outflow and electron precipitation during storms: STORMTIME INERTIAL ALFVéN WAVES ABOVE HIGH-LATITUDE IONOSPHERE
NSF-PAR ID:
10037793
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
121
Issue:
8
ISSN:
2169-9380
Page Range / eLocation ID:
7828 to 7846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recently, it has been realized that magnetic plasma turbulence and magnetic field reconnection are inherently related phenomena. Turbulent fluctuations generate regions of sheared magnetic field that become unstable to the tearing instability and reconnection, thus modifying turbulence at the corresponding scales. In this contribution, we give a brief review of some recent results on tearing‐mediated magnetic turbulence. We illustrate the main ideas of this rapidly developing field of study by concentrating on two important examples—magnetohydrodynamic Alfvén turbulence and small‐scale kinetic‐Alfvén turbulence. Due to various potential applications of these phenomena in space physics and astrophysics, we specifically try not to overload the text by heavy analytical derivations but rather present a qualitative discussion accessible to a non‐expert in the theories of turbulence and reconnection.

     
    more » « less
  2. We report analytical and numerical investigations of subion-scale turbulence in low-beta plasmas using a rigorous reduced kinetic model. We show that efficient electron heating occurs and is primarily due to Landau damping of kinetic Alfvén waves, as opposed to Ohmic dissipation. This collisionless damping is facilitated by the local weakening of advective nonlinearities and the ensuing unimpeded phase mixing near intermittent current sheets, where free energy concentrates. The linearly damped energy of electromagnetic fluctuations at each scale explains the steepening of their energy spectrum with respect to a fluid model where such damping is excluded (i.e., a model that imposes an isothermal electron closure). The use of a Hermite polynomial representation to express the velocity-space dependence of the electron distribution function enables us to obtain an analytical, lowest-order solution for the Hermite moments of the distribution, which is borne out by numerical simulations. 
    more » « less
  3. A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ( $P_\textrm {AWb}$ ) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$ , which we denote by $\chi _{H}(r)$ , and the fraction that is transferred via work, which we denote by $\chi _{W}(r)$ . We find that $\chi _{W}(r_{A})$ ranges from 0.15 to 0.3, where $r_{A}$ is the Alfvén critical point. This value is small compared with one because the Alfvén speed $v_{A}$ exceeds the outflow velocity $U$ at $r < r_{A}$ , so the AWs race through the plasma without doing much work. At $r>r_{A}$ , where $v_{A} < U$ , the AWs are in an approximate sense ‘stuck to the plasma’, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{A}$ , so the total rate at which AWs do work on the plasma at $r>r_{A}$ is a modest fraction of $P_\textrm {AWb}$ . We find that heating is more effective than work at $r < r_{A}$ , with $\chi _{H}(r_{A})$ ranging from 0.5 to 0.7. The reason that $\chi _{H} \geq 0.5$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfvén-speed scale height in RDAWT, and there are a few Alfvén-speed scale heights between the coronal base and $r_{A}$ . A given amount of heating produces more magnetic moment in regions of weaker magnetic field. Thus, paradoxically, the average proton magnetic moment increases robustly with increasing $r$ at $r>r_{A}$ , even though the total rate at which AW energy is transferred to particles at $r>r_{A}$ is a small fraction of $P_\textrm {AWb}$ . 
    more » « less