skip to main content


Title: HOW DISCRETE ARE OAK SPECIES? INSIGHTS FROM A HYBRID ZONE BETWEEN QUERCUS GRISEA AND QUERCUS GAMBELII
NSF-PAR ID:
10038210
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolution
Volume:
51
Issue:
3
ISSN:
0014-3820
Page Range / eLocation ID:
747 to 755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stajich, Jason E. (Ed.)
    ABSTRACT Here, we present the complete chloroplast genomes of Quercus × morehus , Q. wislizeni , and Q. kelloggii from California. The genomes are 161,119 to 161,130 bp and encode 132 genes. Quercus × morehus and Q. wislizeni are identical in sequence but differ from Q. kelloggii by three indels and eight SNPs. 
    more » « less
  2. Stajich, Jason E. (Ed.)
    ABSTRACT Here, we present the chloroplast genome sequence of Quercus agrifolia Née, the California live oak, an ecologically important oak species along the coast of California. The genome is 161,283 bp in length, encodes 132 genes, and has a high level of gene synteny to other Fagaceae. 
    more » « less
  3. Abstract Background and Aims

    Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks.

    Methods

    We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth–death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches.

    Key Results

    East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process.

    Conclusions

    Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.

     
    more » « less