skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Diversity by Numbers to Diversity as Process: Supporting Inclusiveness in Software Development Teams with Brainstorming
Negative experiences in diverse software development teams have the potential to turn off minority participants from future team-based software development activity. We examine the use of brainstorming as one concrete team processes that may be used to improve the satisfaction of minority developers when working in a group. Situating our study in time-intensive hackathon-like environments where engagement of all team members is particularly crucial, we use a combination of survey and interview data to test our propositions. We find that brainstorming strategies are particularly effective for team members who identify as minorities, and support satisfaction with both the process and outcomes of teamwork through different mechanisms.  more » « less
Award ID(s):
1064209 1111750 0943168 1322278 1546393
PAR ID:
10038308
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Software Engineering
Page Range / eLocation ID:
152 to 163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The retrospective is a crucial component of the agile software development process. In previous studies of retrospectives in undergraduate team software development projects, students exhibited limited and shallow reflection. We speculate that this is due to students' limited experience with reflection and the absence of clear guidance for engaging in deep reflection during agile retrospectives. To explore the potential for a pedagogical intervention to foster deeper reflection in retrospectives, we present an empirical comparison of a standard retrospective model against an enhanced retrospective model that scaffolds deeper levels of reflection by prompting students to justify and critique their practices and weigh alternative approaches. Through a systematic classification of the reflection level of statements made during individual brainstorming and team discussion phases of retrospectives, our study found that the enhanced model led to individuals and teams engaging in significantly higher levels of reflection. Our findings contribute to improving software engineering education by demonstrating the efficacy of an enhanced pedagogical model for team retrospectives. 
    more » « less
  2. A Diversity Index (DI) was developed to quantify eight minority categories (“Women”, “Non Male/Female”, “Afro-American”, “Hispanic”, “Asian/other ethnicity” “LGBQT”, “Disabilities”, and “First Generation”) in contrast to the standard “White American male”. This index is compared with a Minority Index (MI) based only on the ratio of “Non White American male” to the total of group members, which exhibits poor representation for diversity when teams are heavily conformed by minority representatives. In addition, the Diversity Index includes a tuning parameter to adjust for the impact of multiple diversities on the same individual. The Diversity Index has been calculated for four junior courses on Reactive Process Engineering and four senior capstone courses on Process Control and Process Design during the last three years (2019-21). Each course included at least two semester-long projects for 4-6 member teams. The Diversity Index was used to assess the performance of 69 self-selected teams, performing 37 technical projects and 101 outreach projects total. Assessments included relations with grades, peer-grading, team experience, and scope of activities. The analysis provides a quantitative approach to the impact of diversity on team performance. Reliability on some data is still difficult to validate. This study has relied mainly on the instructor interactions with students. In order to protect the students’ personal information, the proposed Diversity Index outputs a quantitative value without exposing the diversity source, and thus promoting more honest, secure and respectful participation. A new step is in progress to offer a “diversity rewarded” option to motivate students to select team members providing for larger inclusion and diversity. 
    more » « less
  3. Anticipating risks in software development is always challenging, but particularly so when the software application is part of a novel sociotechnical system with various human and physical components. Our interdisciplinary team of software engineering and human factors researchers is designing such a system. In order to identify and mitigate the risks latent in this previously unexplored space, we have used the premortem method at an early stage in system design. In the premortem, the team ideated failure scenarios across the range of system use, then collaborated on ways to eliminate, mitigate, or monitor the risks of these failures. We have found the premortem method valuable in recognizing and mitigating previously unanticipated risks and in enriching team communication. 
    more » « less
  4. Assessing team software development projects is notoriously difficult and typically based on subjective metrics. To help make assessments more rigorous, we conducted an empirical study to explore relationships between subjective metrics based on peer and instructor assessments, and objective metrics based on GitHub and chat data. We studied 23 undergraduate software teams (n= 117 students) from two undergraduate computing courses at two North American research universities. We collected data on teams’ (a) commits and issues from their GitHub code repositories, (b) chat messages from their Slack and Microsoft Teams channels, (c) peer evaluation ratings from the CATME peer evaluation system, and (d) individual assignment grades from the courses. We derived metrics from (a) and (b) to measure both individual team members’contributionsto the team, and theequalityof team members’ contributions. We then performed Pearson analyses to identify correlations among the metrics, peer evaluation ratings, and individual grades. We found significant positive correlations between team members’ GitHub contributions, chat contributions, and peer evaluation ratings. In addition, the equality of teams’ GitHub contributions was positively correlated with teams’ average peer evaluation ratings and negatively correlated with the variance in those ratings. However, no such positive correlations were detected between the equality of teams’ chat contributions and their peer evaluation ratings. Our study extends previous research results by providing evidence that (a) team members’ chat contributions, like their GitHub contributions, are positively correlated with their peer evaluation ratings; (b) team members’ chat contributions are positively correlated with their GitHub contributions; and (c) the equality of team’ GitHub contributions is positively correlated with their peer evaluation ratings. These results lend further support to the idea that combining objective and subjective metrics can make the assessment of team software projects more comprehensive and rigorous. 
    more » « less
  5. As online social networks (OSNs) become more prevalent, a new paradigm for problem-solving through crowd-sourcing has emerged. By leveraging the OSN platforms, users can post a problem to be solved and then form a team to collaborate and solve the problem. A common concern in OSNs is how to form effective collaborative teams, as various tasks are completed through online collaborative networks. A team’s diversity in expertise has received high attention to producing high team performance in developing team formation (TF) algorithms. However, the effect of team diversity on performance under different types of tasks has not been extensively studied. Another important issue is how to balance the need to preserve individuals’ privacy with the need to maximize performance through active collaboration, as these two goals may conflict with each other. This research has not been actively studied in the literature. In this work, we develop a team formation (TF) algorithm in the context of OSNs that can maximize team performance and preserve team members’ privacy under different types of tasks. Our proposedPRivAcy-Diversity-AwareTeamFormation framework, calledPRADA-TF, is based on trust relationships between users in OSNs where trust is measured based on a user’s expertise and privacy preference levels. The PRADA-TF algorithm considers the team members’ domain expertise, privacy preferences, and the team’s expertise diversity in the process of team formation. Our approach employs game-theoretic principlesMechanism Designto motivate self-interested individuals within a team formation context, positioning the mechanism designer as the pivotal team leader responsible for assembling the team. We use two real-world datasets (i.e., Netscience and IMDb) to generate different semi-synthetic datasets for constructing trust networks using a belief model (i.e., Subjective Logic) and identifying trustworthy users as candidate team members. We evaluate the effectiveness of our proposedPRADA-TFscheme in four variants against three baseline methods in the literature. Our analysis focuses on three performance metrics for studying OSNs: social welfare, privacy loss, and team diversity. 
    more » « less