skip to main content

Title: Ecohydrological interfaces as hot spots of ecosystem processes: ECOHYDROLOGICAL INTERFACES AS HOT SPOTS
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1637590
Publication Date:
NSF-PAR ID:
10038362
Journal Name:
Water Resources Research
Volume:
53
Issue:
8
Page Range or eLocation-ID:
6359 to 6376
ISSN:
0043-1397
Publisher:
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Wymore, A. ; Yang, W. ; Silver, W. ; McDowell, B. ; Chorover, J. (Ed.)
    Biogeochemical processes are often spatially discrete (hot spots) and temporally isolated (hot moments) due to variability in controlling factors like hydrologic fluxes, lithological characteristics, bio-geomorphic features, and external forcing. Although these hot spots and hot moments (HSHMs) account for a high percentage of carbon, nitrogen and nutrient cycling within the Critical Zone, the ability to identify and incorporate them into reactive transport models remains a significant challenge. This chapter provides an overview of the hot spots hot moments (HSHMs) concepts, where past work has largely focused on carbon and nitrogen dynamics within riverine systems. This work is summarized in the context of process-based and data-driven modeling approaches, including a brief description of recent research that casts a wider net to incorporate Hg, Fe and other Critical Zone elements, and focuses on interdisciplinary approaches and concepts. The broader goal of this chapter is to provide an overview of the gaps in our current understanding of HSHMs, and the opportunities therein, while specifically focusing on the underlying parameters and processes leading to their prognostic and diagnostic representation in reactive transport models.
  2. Wymore, A.S. (Ed.)
    The Critical Zone encompasses the biosphere and its heterogeneities, with an extremely high differentiation of properties and processes within each compartment from bedrock to canopy, and across terrestrial and aquatic interfaces. Given this complexity, a comprehensive areal characterization of the critical zone environment at multiple temporal resolutions is needed but not always possible, and failing which the ecosystem fluxes, exchange rates and biogeochemical functioning may be under- or over-predicted. The hot spots hot moments (HSHMs) concept provides an opportunity to identify the dominant controls on carbon, nutrients, water and energy exchanges. Hot spots are regions or sites that show disproportionately high reaction rates relative to surrounding area, while hot moments are defined as times that show disproportionately high reaction rates relative to longer intervening time periods (McClain et al. 2003).