skip to main content


Title: Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP: Scale Dependence of Large-Scale Forcing
NSF-PAR ID:
10038578
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
122
Issue:
16
ISSN:
2169-897X
Page Range / eLocation ID:
8724 to 8738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We explore the response of wintertime Arctic sea ice growth to strong cyclones and to large-scale circulation patterns on the daily scale using Earth system model output in phase 5 of the Coupled Model Intercomparison Project (CMIP5). A combined metrics ranking method selects three CMIP5 models that are successful in reproducing the wintertime Arctic dipole (AD) pattern. A cyclone identification method is applied to select strong cyclones in two subregions in the North Atlantic to examine their different impacts on sea ice growth. The total change of sea ice growth rate (SGR) is split into those respectively driven by the dynamic and thermodynamic atmospheric forcing. Three models reproduce the downward longwave radiation anomalies that generally match thermodynamic SGR anomalies in response to both strong cyclones and large-scale circulation patterns. For large-scale circulation patterns, the negative AD outweighs the positive Arctic Oscillation in thermodynamically inhibiting SGR in both impact area and magnitude. Despite the disagreement on the spatial distribution, the three CMIP5 models agree on the weaker response of dynamic SGR than thermodynamic SGR. As the Arctic warms, the thinner sea ice results in more ice production and smaller spatial heterogeneity of thickness, dampening the SGR response to the dynamic forcing. The higher temperature increases the specific heat of sea ice, thus dampening the SGR response to the thermodynamic forcing. In this way, the atmospheric forcing is projected to contribute less to change daily SGR in the future climate. 
    more » « less
  2. Abstract

    Analyses of atmospheric heat and moisture budgets serve as an effective tool to study convective characteristics over a region and to provide large‐scale forcing fields for various modeling applications. This paper examines two popular methods for computing large‐scale atmospheric budgets: the conventional budget method (CBM) using objectively gridded analyses based primarily on radiosonde data and the constrained variational analysis (CVA) approach which supplements vertical profiles of atmospheric fields with measurements at the top of the atmosphere and at the surface to conserve mass, water, energy, and momentum. Successful budget computations are dependent on accurate sampling and analyses of the thermodynamic state of the atmosphere and the divergence field associated with convection and the large‐scale circulation that influences it. Utilizing analyses generated from data taken during Dynamics of the Madden‐Julian Oscillation (DYNAMO) field campaign conducted over the central Indian Ocean from October to December 2011, we evaluate the merits of these budget approaches and examine their limitations. While many of the shortcomings of the CBM, in particular effects of sampling errors in sounding data, are effectively minimized with CVA, accurate large‐scale diagnostics in CVA are dependent on reliable background fields and rainfall constraints. For the DYNAMO analyses examined, the operational model fields used as the CVA background state provided wind fields that accurately resolved the vertical structure of convection in the vicinity of Gan Island. However, biases in the model thermodynamic fields were somewhat amplified in CVA resulting in a convective environment much weaker than observed.

     
    more » « less
  3. Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.

     
    more » « less
  4. Abstract

    This study examined the contribution of the Pacific decadal oscillation (PDO) to the record-breaking 2013–17 drought in the Korean Peninsula. The meteorological drought signal, measured by the Standardized Precipitation Index (SPI), in 2013 and 2016 co-occurred with a heat wave. The positive phase of the PDO during the mid-2010s was responsible for the precipitation deficit, particularly in 2014, 2015, and 2017, resulting in 5 years of meteorological drought. The enhanced atmospheric heating anomalies over the subtropical central Pacific, induced by the in situ PDO-related sea surface temperature (SST) warming, led to a low-atmospheric cyclonic flow centered over the midlatitude Pacific. The northerly wind anomalies at the western edge of this low-level cyclonic flow were responsible for the horizontal negative advection of moist energy, which contributed to the decreased precipitation and the resultant negative SPI over the Korean Peninsula in 2014, 2015, and 2017. The large-ensemble simulation supported the observational findings that the composited SST anomalies during the 5 years of persistent drought exhibited prominent and persistent SST warming over the subtropical central Pacific, along with large-scale cyclonic flow over the North Pacific. The findings of this study imply that the SST anomalies over the North Pacific and subtropical central Pacific can be a predictable source to potentially increase the ability to forecast multiyear droughts over the Korean Peninsula.

     
    more » « less