Like metazoans, plants use small regulatory
The altered carbon assimilation pathway of crassulacean acid metabolism (
- PAR ID:
- 10038640
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 92
- Issue:
- 1
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 19-30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary RNA s (sRNA s) to direct gene expression. Several classes ofsRNA s, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNA s (miRNA s) andtrans ‐acting small interferingRNA s (ta‐siRNA s) mainly inhibit gene expression at post‐transcriptional levels. In the past decades, plant miRNA s and ta‐siRNA s have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNA s and ta‐siRNA s are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNA s and ta‐siRNA s in plant physiology and development. -
Abstract Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant
Arabidopsis thaliana (Arabidopsis ) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside ofArabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function ofBrachypodium distachyon (Brachypodium ) andSetaria viridis (Setaria ) orthologs of a key clock gene inEARLY FLOWERING 3,Arabidopsis . To identify both cycling genes and putative functional orthologs inELF 3Setaria , a circadianRNA ‐seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles ofSetaria genes under circadian conditions. The function of orthologs fromELF 3Arabidopsis, Brachypodium, andSetaria was tested for complementation of anelf3 mutation inArabidopsis . We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that BdELF 3 and SvELF 3 could be integrated into similar complexesin vivo as AtELF 3. Thus, we find that, despite 180 million years of separation,Bd andELF 3Sv can functionally complement loss ofELF 3 at the molecular and physiological level.ELF 3 -
Summary Plant small
RNA s (sRNA s) modulate key physiological mechanisms through post‐transcriptional and transcriptional silencing of gene expression. SmallRNA s fall into two major categories: those are reliant onRNA ‐dependentRNA polymerases ( s) for biogenesis and those that are not. KnownRDR /RDR 12 /6 ‐dependentsRNA s include phased and repeat‐associated short interferingRNA s, while known /RDR 12 /6 ‐independentsRNA s are primarily microRNA s (miRNA ) and other hairpin‐derivedsRNA s. In this study we produced and analyzedsRNA ‐seq libraries fromrdr1 /rdr2 /rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on , ‐RDR 12 , or ‐6 function, casting doubt on their classification. We also found 38 /RDR 12 /6‐independentsRNA loci that are not s or otherwise hairpin‐derived, and did not fit into other known paradigms forMIRNA sRNA biogenesis. These 38sRNA ‐producing loci have as‐yet‐undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein‐coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types ofsRNA inArabidopsis thaliana . -
Summary Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In
Arabidopsis thaliana , vernalization leads to the stable repression of the floral repressor via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (FLOWERING LOCUS CPRC 2). Vernalization in pooids is associated with the stable induction of a floral promoter, (VERNALIZATION 1VRN1 ). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon , we identified two recessive alleles of (ENHANCER OF ZESTE ‐LIKE 1 ).EZL 1 is orthologous toEZL 1A. thaliana , a gene that encodes the catalytic subunit ofCURLY LEAF 1PRC 2.B. distachyon ezl1 mutants flower rapidly without vernalization in long‐day (LD ) photoperiods; thus, is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inEZL 1ezl1 revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toEZL 1PRC 2 activity inB. distachyon . Furthermore, inezl1 mutants, the flowering genes andVRN 1 (AGAMOUS ) are ectopically expressed and have reduced H3K27me3. Artificial microAG RNA knock‐down of either orVRN 1 inAG ezl1‐1 mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1 mutants may contribute to the rapid‐flowering phenotype. -
Abstract ARGONAUTES are the central effector proteins of
RNA silencing which bind target transcripts in a smallRNA ‐guided manner.Arabidopsis thaliana has 10 (ARGONAUTE ) genes, with specialized roles inAGO RNA ‐directedDNA methylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization among genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO ,AGO 1 , andAGO 10 using yeast 1‐hybrid assays. A ranked list of candidateAGO 7DNA ‐bindingTF s revealed binding of the promoter by a number of proteins in two families: the miR156‐regulatedAGO 7SPL family and the miR319‐regulatedTCP family, both of which have roles in developmental timing and leaf morphology. Possible functions forSPL andTCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of , nor for the function ofAGO 7 in leaf shape. NormalAGO 7 transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO 7AGO 7‐triggered pathway functions in timing and polarity.TAS 3