skip to main content


Title: Si Doped Hafnium Oxide—A “Fragile” Ferroelectric System
Abstract

Silicon doped hafnium oxide was the material used in the original report of ferroelectricity in hafnia in 2011. Since then, it has been subject of many further publications including the demonstration of the world's first ferroelectric field‐effect transistor in the state‐of‐the‐art 28 nm technology. Though many studies are conducted with a strong focus on application in memory devices, a comprehensive study on structural stability in these films remains to be seen. In this work, a film thickness of about 36 nm, instead of the 10 nm used in most previous studies, is utilized to carefully probe how the concentration range impacts the evolution of phases, the dopant distribution, the field cycling effects, and their interplay in the macroscopic ferroelectric response of the films. Si:HfO2appears to be a rather fragile system: different phases seem close in energy and the system is thus rich in competing phenomena. Nonetheless, it offers ferroelectricity or field‐induced ferroelectricity for elevated annealing conditions up to 1000 °C. Similar to the measures taken for conventional ferroelectrics such as lead zirconate titanate, engineering efforts to guarantee stable interfaces and stoichiometry are mandatory to achieve stable performance in applications such as ferroelectric memories, supercapacitors, or energy harvesting devices.

 
more » « less
NSF-PAR ID:
10038804
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
3
Issue:
10
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ferroelectricity in fluorite oxides has gained increasing interest due to its promising properties for multiple applications in semiconductor as well as energy devices. The structural origin of the unexpected ferroelectricity is now believed to be the formation of a non‐centrosymmetric orthorhombic phase with the space group ofPca21. However, the factors driving the formation of the ferroelectric phase are still under debate. In this study, to understand the effect of annealing temperature, the crystallization process of doped HfO2thin films is analyzed using in situ, high‐temperature X‐ray diffraction. The change in phase fractions in a multiphase system accompanied with the unit cell volume increase during annealing could be directly observed from X‐ray diffraction analyses, and the observations give an information toward understanding the effect of annealing temperature on the structure and electrical properties. A strong coupling between the structure and the electrical properties is reconfirmed from this result.

     
    more » « less
  2. Abstract

    Ferroelectric materials owning a polymorphic nanodomain structure usually exhibit colossal susceptibilities to external mechanical, electrical, and thermal stimuli, thus holding huge potential for relevant applications. Despite the success of traditional strategies by means of complex composition design, alternative simple methods such as strain engineering have been intensively sought to achieve a polymorphic nanodomain state in lead‐free, simple‐composition ferroelectric oxides in recent years. Here, a nanodomain configuration with morphed structural phases is realized in an epitaxial BaTiO3film grown on a (111)‐oriented SrTiO3substrate. Using a combination of experimental and theoretical approaches, it is revealed that a threefold rotational symmetry element enforced by the epitaxial constraint along the [111] direction of BaTiO3introduces considerable instability among intrinsic tetragonal, orthorhombic, and rhombohedral phases. Such phase degeneracy induces ultrafine ferroelectric nanodomains (1–10 nm) with low‐angle domain walls, which exhibit significantly enhanced dielectric and piezoelectric responses compared to the (001)‐oriented BaTiO3film with uniaxial ferroelectricity. Therefore, the finding highlights the important role of epitaxial symmetry in domain engineering of oxide ferroelectrics and facilitates the development of dielectric capacitors and piezoelectric devices.

     
    more » « less
  3. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less
  4. null (Ed.)
    Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO 3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO 3 :MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films. 
    more » « less
  5. Abstract

    Originally based on phenomenological observations, the Janovec–Kay–Dunn (JKD) scaling law has been historically used to describe the dependence of the ferroelectric coercive fields (Ec) on a critical length scale of the material, wherein the film thickness (t) is considered the length scale, andEct−2/3. Here, for the first time, a JKD‐type scaling behavior is reported in an antiferroelectric material, using the ultra‐thin films of prototypical flourite‐structure binary oxide, zirconia. In these films, a decrease in the ZrO2layer thickness from 20 nm to 5.4 nm leads to an increase in critical fields for both nonpolar‐to‐polar (Ea), and polar‐to‐nonpolar (Ef) transitions, accompanied by a decrease in the average crystallite size, and an increase in the tetragonal distortion of the non‐polarP42/nmcground state structure. Notably, the ‐2/3 power law as in the JKD law holds when average crystallite size (d), measured from glancing‐incident X‐ray diffraction, is considered as the critical length scale—i.e.,Ea,Efd−2/3. First principles calculations suggest that the increase of tetragonality in thinner films contributes to an increase of the energy barrier for the transition from the non‐polar tetragonal ground state to the field‐induced polar orthorhombic phase, and in turn, an increase inEacritical fields. These results suggest a de‐stabilization of the ferroelectric phase with a decreasing thickness in antiferroelectric ZrO2, which is contrary to the observations in its fluorite‐structure ferroelectric counterparts. With the recent interests in utilizing antiferroelectricity for advanced semiconductor applications, our fundamental exposition of the thickness dependence of functional responses therein can accelerate the development of miniaturized, antiferroelectric electronic memory elements for the complementary metal‐oxide‐semiconductor based high‐volume manufacturing platforms.

     
    more » « less