skip to main content


Title: The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations: EXTREME PRECIPITATION AND CONVECTIVE ORG
NSF-PAR ID:
10039358
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
43
Issue:
21
ISSN:
0094-8276
Page Range / eLocation ID:
11,445 to 11,452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates remain uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is addressed here by analyzing idealized convection-permitting simulations of radiative–convective equilibrium in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation extremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across climates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics and turbulence schemes, implies a thermodynamic contribution that scales with near-surface moisture despite substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals that the small dynamic mode in channel simulations ([Formula: see text]2% K−1) is caused by opposing height dependences of vertical velocity and density, together with the buffering influence of cloud-base buoyancies that vary little with surface temperature. These results reinforce an emerging picture of the response of extreme tropical precipitation rates to warming: a thermodynamic mode of about 7% K−1dominates, with a minor contribution from changes in dynamics.

     
    more » « less
  2. Abstract

    Mesoscale convective systems (MCSs) are a substantial source of precipitation in the eastern U.S. and may be sensitive to regional climatic change. We use a suite of convection-permitting climate simulations to examine possible changes in MCS precipitation. Specifically, annual and regional totals of MCS and non-MCS precipitation generated during a retrospective simulation are compared to end-of-21st-century simulations based on intermediate and extreme climate change scenarios. Both scenarios produce more MCS precipitation and less non-MCS precipitation, thus significantly increasing the proportion of precipitation associated with MCSs across the U.S.

     
    more » « less