skip to main content

Title: The Wikipedia Adventure: Field Evaluation of an Interactive Tutorial for New Users
Integrating new users into a community with complex norms presents a challenge for peer production projects like Wikipedia. We present The Wikipedia Adventure (TWA): an interactive tutorial that offers a structured and gamified introduction to Wikipedia. In addition to describing the design of the system, we present two empirical evaluations. First, we report on a survey of users, who responded very positively to the tutorial. Second, we report results from a large-scale invitation-based field experiment that tests whether using TWA increased newcomers' subsequent contributions to Wikipedia. We find no effect of either using the tutorial or of being invited to do so over a period of 180 days. We conclude that TWA produces a positive socialization experience for those who choose to use it, but that it does not alter patterns of newcomer activity. We reflect on the implications of these mixed results for the evaluation of similar social computing systems.
Authors:
; ; ; ;
Award ID(s):
1617129
Publication Date:
NSF-PAR ID:
10039617
Journal Name:
Proceedings of the 20th ACM Conference on Computer-Supported Cooperative Work & Social Computing (CSCW ’17)
Page Range or eLocation-ID:
1785 to 1799
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, the pace of innovations in the fields of machine learning (ML) has accelerated, researchers in SysML have created algorithms and systems that parallelize ML training over multiple devices or computational nodes. As ML models become more structurally complex, many systems have struggled to provide all-round performance on a variety of models. Particularly, ML scale-up is usually underestimated in terms of the amount of knowledge and time required to map from an appropriate distribution strategy to the model. Applying parallel training systems to complex models adds nontrivial development overheads in addition to model prototyping, and often results in lower-than-expected performance. This tutorial identifies research and practical pain points in parallel ML training, and discusses latest development of algorithms and systems on addressing these challenges in both usability and performance. In particular, this tutorial presents a new perspective of unifying seemingly different distributed ML training strategies. Based on it, introduces new techniques and system architectures to simplify and automate ML parallelization. This tutorial is built upon the authors' years' of research and industry experience, comprehensive literature survey, and several latest tutorials and papers published by the authors and peer researchers. The tutorial consists of four parts. The first partmore »will present a landscape of distributed ML training techniques and systems, and highlight the major difficulties faced by real users when writing distributed ML code with big model or big data. The second part dives deep to explain the mainstream training strategies, guided with real use case. By developing a new and unified formulation to represent the seemingly different data- and model- parallel strategies, we describe a set of techniques and algorithms to achieve ML auto-parallelization, and compiler system architectures for auto-generating and exercising parallelization strategies based on models and clusters. The third part of this tutorial exposes a hidden layer of practical pain points in distributed ML training: hyper-parameter tuning and resource allocation, and introduces techniques to improve these aspects. The fourth part is designed as a hands-on coding session, in which we will walk through the audiences on writing distributed training programs in Python, using the various distributed ML tools and interfaces provided by the Ray ecosystem.« less
  2. User-generated content sites routinely block contributions from users of privacy-enhancing proxies like Tor because of a perception that proxies are a source of vandalism, spam, and abuse. Although these blocks might be effective, collateral damage in the form of unrealized valuable contributions from anonymity seekers is invisible. One of the largest and most important user-generated content sites, Wikipedia, has attempted to block contributions from Tor users since as early as 2005. We demonstrate that these blocks have been imperfect and that thousands of attempts to edit on Wikipedia through Tor have been successful. We draw upon several data sources and analytical techniques to measure and describe the history of Tor editing on Wikipedia over time and to compare contributions from Tor users to those from other groups of Wikipedia users. Our analysis suggests that although Tor users who slip through Wikipedia's ban contribute content that is more likely to be reverted and to revert others, their contributions are otherwise similar in quality to those from other unregistered participants and to the initial contributions of registered users.
  3. User-generated content sites routinely block contributions from users of privacy-enhancing proxies like Tor because of a perception that proxies are a source of vandalism, spam, and abuse. Although these blocks might be effective, collateral damage in the form of unrealized valuable contributions from anonymity seekers is invisible. One of the largest and most important user-generated content sites, Wikipedia, has attempted to block contributions from Tor users since as early as 2005. We demonstrate that these blocks have been imperfect and that thousands of attempts to edit on Wikipedia through Tor have been successful. We draw upon several data sources and analytical techniques to measure and describe the history of Tor editing on Wikipedia over time and to compare contributions from Tor users to those from other groups of Wikipedia users. Our analysis suggests that although Tor users who slip through Wikipedia's ban contribute content that is more likely to be reverted and to revert others, their contributions are otherwise similar in quality to those from other unregistered participants and to the initial contributions of registered users.
  4. In this tutorial, we present our recent work on building trusted, resilient and interpretable AI models by combining symbolic methods developed for automated reasoning with connectionist learning methods that use deep neural networks. The increasing adoption of artificial intelligence and machine learning in systems, including safety-critical systems, has created a pressing need for developing scalable techniques that can be used to establish trust over their safe behavior, resilience to adversarial attacks, and interpretability to enable human audits. This tutorial is comprised of three components: review of techniques for verification of neural networks, methods for using geometric invariants to defend against adversarial attacks, and techniques for extracting logical symbolic rules by reverse engineering machine learning models. These techniques form the core of TRINITY: Trusted, Resilient and Interpretable AI framework being developed at SRI. In this tutorial, we identify the key challenges in building the TRINITY framework, and report recent results on each of these three fronts.
  5. Motivated by cloud computing, we study a market-based approach for job scheduling on multiple machines where users have hard deadlines and prefer earlier completion times. In our model, completing a job provides a benefit equal to its present value, i.e., the value discounted to the time when the job finishes. Users submit job requirements to the cloud provider who non-preemptively schedules jobs to maximize the social welfare, i.e., the sum of present values of completed jobs. Using a simple and fast greedy algorithm, we obtain a 1+s/(s−1) approximation to the optimal schedule, where s>1 is the minimum ratio of a job’s deadline to processing time. Building on our approximation algorithm, we construct a pricing rule to incentivize users to truthfully report all job requirements.