skip to main content


Title: Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate: RH-DEPENDENT WATER-AFFINITY OF BSOA
NSF-PAR ID:
10039751
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
10
ISSN:
0094-8276
Page Range / eLocation ID:
5167 to 5177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The application of Co2‐xRhxP nanoparticles as electrocatalysts for the hydrogen evolution reaction (HER) and overall water splitting in basic media is reported. The experimental design seeks to dilute rhodium with earth‐abundant cobalt as a means to lower the cost of the material and achieve catalytic synergism, as reported for related bimetallic phosphides. The HER activity of Co2‐xRhxP is found to be composition‐dependent, with the rhodium‐rich compositions being more active as compared to their cobalt‐rich counterparts, with overpotentials (η) at 10 mA/cm2geometricof 58.1–63.9 mV vs. 82.1–188.1 mV, respectively. In contrast, Co‐rich Co2‐xRhxP nanoparticles are active for the oxygen evolution reaction (OER) process in basic media, with η= 290 mV for x=0.25. A full water electrolysis cell was created using the most active compositions for OER and HER as the anode and cathode, respectively, generating an overall η= 390 mV. Notably, the cell became more active over a 50 h stability test, increasing by 2 mV/cm2geometricat a constant applied voltage of 1.62 V vs NHE. This enhanced activity correlates with nanoscale phase segregation of Rh in the anode. Thus, the lower overpotential achieved for Co1.75Rh0.25P relative to Co2P, and the augmented activity over time in the former, may be a consequence of restructuring of the anode driven by Rh phase‐segregation. The augmentation in activity at the anode more than compensates for small losses at the cathode.

     
    more » « less