skip to main content


Title: Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review
Abstract

Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water‐soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the “giant red‐edge effect”. As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength‐dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.

 
more » « less
NSF-PAR ID:
10039865
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – An Asian Journal
Volume:
12
Issue:
18
ISSN:
1861-4728
Page Range / eLocation ID:
p. 2343-2353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Graphene quantum dots were covalently crosslinked forming ensembles of a few hundred nanometers in size by McMurry deoxygenation coupling reactions of peripheral carbonyl functional moieties catalyzed by TiCl4and Zn powders in refluxing THF, as evidenced by TEM, AFM, FTIR, Raman and XPS measurements. Photoluminescence measurements showed that after chemical coupling, the excitation and emission peaks blue‐shifted somewhat and the emission intensity increased markedly, likely due to the removal of oxygenated species where quinone‐like species are known to be effective electron acceptors and emission quenchers.

     
    more » « less
  2. Abstract

    Conventional β‐lactam antibiotics are resisted by bacteria at an increasing rate, prompting studies into the development of alternate antibiotic agents. In this personal account, we summarize recent progress in the design and engineering of graphene oxide quantum dot‐based nanomaterials as potent antimicrobial agents. Specifically, we examine the impacts of chemical reduction on the antimicrobial activity of graphene oxide quantum dots, and enhancement of the bactericidal performance by the formation of nanocomposites with metal oxide nanoparticles, within the context of photodynamic generation of reactive oxygen species. A perspective is also included where the promises and challenges are highlighted in the development of high‐performance antimicrobial agents based on graphene derivatives.

     
    more » « less
  3. Abstract

    Colloidal quantum dots (QDs)/graphene nanohybrids provide a unique platform to design photodetectors of high performance. These photodetectors are quantum sensors due to the strong quantum confinement in QDs for spectral tunability, and in graphene for high charge mobility. Quantitatively, the high carrier mobility of graphene plays a critical role to enable high photoconductive gain and understanding its impact on the photodetector performance is imperative. Herein, we report a comparative study of PbS QDs/graphene nanohybrids with monolayer and bilayer graphene for broadband photodetection ranging from ultraviolet, visible, near-infrared to short-wave infrared spectra (wavelength: 400 nm–1750 nm) to determine if a specific advantage exists for one over the other. This study has revealed that both the monolayer and bilayer graphene grown in chemical vapor deposition can provide a highly efficient charge transfer channel for photo-generated carriers for high broadband photoresponse.

     
    more » « less
  4. Abstract

    Self‐limited nanoassemblies, such as supraparticles (SPs), can be made from virtually any nanoscale components, but SPs from nanocarbons including graphene quantum dots (GQDs), are hardly known because of the weak van der Waals attraction between them. Here it is shown that highly uniform SPs from GQDs can be successfully assembled when the components are bridged by Tb3+ions supplementing van der Waals interactions. Furthermore, they can be coassembled with superoxide dismutase, which also has weak attraction to GQDs. Tight structural integration of multilevel components into SPs enables efficient transfer of excitonic energy from GQDs and protein to Tb3+. This mechanism is activated when Cu2+is reduced to Cu1+by nitric oxide (NO)—an important biomarker for viral pulmonary infections and Alzheimer's disease. Due to multipronged fluorescence enhancement, the limit of NO detection improves 200 times reaching 10 × 10–12m. Furthermore, the uniform size of SPs enables digitization of the NO detection using the single particle detection format resulting in confident registration of as few as 600 molecules mL−1. The practicality of the SP‐based assay is demonstrated by the successful monitoring of NO in human breath. The biocompatible SPs combining proteins, carbonaceous nanostructures, and ionic components provide a general path for engineering uniquely sensitive assays for noninvasive tracking of infections and other diseases.

     
    more » « less
  5. Abstract Semiconductor quantum dots/graphene heterostructure nanohybrids combine the advantages of the enhanced light–matter interaction and spectral tunability of quantum dots (QDs) and high charge mobility in graphene as a charge transport pathway, providing a unique platform for exploration of photodetectors with high performance. In particular, the QDs/graphene nanohybrids allow resolution to the critical issue of charge transport in QDs-only photodetectors stemming from the low charge mobility associated with both QD surface defect states and inter-QD junctions. Furthermore, the achieved capability in industrial-scale fabrication of graphene and colloidal QDs has motivated efforts in research of QDs/graphene nanohybrids focal plane arrays that are expected to be not only high performance and low cost, but also light-weight, flexible and wearable. This paper aims to highlight recent progress made in the research and development of QDs/graphene nanohybrid photodetectors and discuss the challenges remained towards their commercial applications. 
    more » « less