skip to main content


Title: The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa
NSF-PAR ID:
10040361
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1175
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
18
Issue:
9
ISSN:
1525-755X
Page Range / eLocation ID:
2407 to 2424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climatic variability across a large fraction of the Southern Hemisphere is controlled by the Southern Annular Mode and associated latitudinal shifts in the Southern Westerly Wind belt. In Patagonia, these changes control the large-scale temperature and precipitation trends – and resulting glacier surface mass balance. Our understanding of recent changes in this climatic oscillation is, however, limited by the number of paleo-environmental records in the mid to high-latitude Southern Hemisphere. Here, we first use a synthetic proxy record to demonstrate that periodicity may be preserved in a wider range of records than can be used for quantitative paleoclimatic reconstructions. We then analyze a 5000-year-long sedimentation record derived from Lago Argentino, a 1500 km2 ice-contact lake in Southern Patagonia. We extract a mass accumulation rate and greyscale pixel intensity record from 28 cores across all of Lago Argentino's main depositional environments. We align the mass accumulation rate and pixel intensity records to a common time axis through multivariate dynamic-time-warping, and investigate their spectral properties using the multi-taper Lomb Scargle periodogram. We find statistically significant spectral peaks at 200 ± 20, 150 ± 16, and 85 ± 9 years in two thirds of mass accumulation rate and one third of the pixel intensity records. These periodicities reveal the centennial periodicity of the Southern Annular Mode, which is the key climatic driver of sedimentation at Lago Argentino. 
    more » « less
  2. null (Ed.)
    Abstract. The climate of the Southern Hemisphere (SH) is stronglyinfluenced by variations in the El Niño–Southern Oscillation (ENSO) andthe Southern Annular Mode (SAM). Because of the limited length ofinstrumental records in most parts of the SH, very little is known about therelationship between these two key modes of variability over time. Usingproxy-based reconstructions and last-millennium climate model simulations,we find that ENSO and SAM indices are mostly negatively correlated over thepast millennium. Pseudo-proxy experiments indicate that currently availableproxy records are able to reliably capture ENSO–SAM relationships back to atleast 1600 CE. Palaeoclimate reconstructions show mostly negativecorrelations back to about 1400 CE. An ensemble of last-millennium climatemodel simulations confirms this negative correlation, showing a stablecorrelation of approximately −0.3. Despite this generally negativerelationship we do find intermittent periods of positive ENSO–SAMcorrelations in individual model simulations and in the palaeoclimatereconstructions. We do not find evidence that these relationshipfluctuations are caused by exogenous forcing nor by a consistent climatepattern. However, we do find evidence that strong negative correlations areassociated with strong positive (negative) anomalies in the InterdecadalPacific Oscillation and the Amundsen Sea Low during periods when SAM andENSO indices are of opposite (equal) sign. 
    more » « less