skip to main content

Title: Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans
 ;  ;  ;  ;  ;  ;  ;
Publication Date:
Journal Name:
Journal of Phycology
Page Range or eLocation-ID:
951 to 960
Sponsoring Org:
National Science Foundation
More Like this
  1. This study builds on recent treatments of the marine red algal family Gracilariaceae (Gracilariales) focusing in detail on Hydropuntia and Crassiphycus. Species in these two genera often present identification problems due to high levels of morphologial similarity among genetically distinct species, and high levels of phenotypic plasticity, leading to pseudocryptic speciation and homoplasies. In order to resolve long standing problems, clarify some species concepts and better understand the evolution of the group, we performed phylogenetic analyses of all plastid rbcL DNA sequences available for known Hydropuntia and Crassiphycus species, including newly sequenced specimens. Our results revealed the presence of potentially undescribed species, the existence of strong phylogeographic patterns below and above the species level and helped re-delineate morphologically similar taxa. New detailed morphological descriptions for three common yet poorly known Western Atlantic species are provided: C. secundus, C. usneoides and H. rangiferina. H. rangiferina from the Indo- Pacific is a distinct species from the true H. rangiferina and represents a putative undescribed species. We also provide a time-calibrated phylogeny for the six genera in the Gracilariales to identify past geological and climatic processes associated with their origin and diversification.
  2. The pelagic brown macroalga Sargassum supports rich biological communities in the tropical and subtropical Atlantic region, including a variety of epiphytic invertebrates that grow on the Sargassum itself. The thecate hydroid Aglaophenia latecarinata is commonly found growing on some, but not all, Sargassum forms. In this study, we examined the relationship between A. latecarinata and its pelagic Sargassum substrate across a broad geographic area over the course of 4 years (2015–2018). The distribution of the most common Sargassum forms that we observed ( Sargassum fluitans III and S. natans VIII ) was consistent with the existence of distinct source regions for each. We found that A. latecarinata hydroids were abundant on both S. natans VIII and S. fluitans III , and also noted a rare observation of A. latecarinata on S. natans I . For the hydroids on S. natans VIII and S. fluitans III , hydroid mitochondrial genotype was strongly correlated with the Sargassum substrate form. We found significant population genetic structure in the hydroids, which was also consistent with the distributional patterns of the Sargassum forms. These results suggest that hydroid settlement on the Sargassum occurs in type-specific Sargassum source regions. Hydroid species identification is challenging and crypticmore »speciation is common in the Aglaopheniidae. Therefore, to confirm our identification of A. latecarinata , we conducted a phylogenetic analysis that showed that while the genus Aglaophenia was not monophyletic, all A. latecarinata haplotypes associated with pelagic Sargassum belonged to the same clade and were likely the same species as previously published sequences from Florida, Central America, and one location in Brazil (São Sebastião). A nominal A. latecarinata sequence from a second Brazilian location (Alagoas) likely belongs to a different species.« less
  3. Hantula, Jarkko (Ed.)