More Like this
-
Denitrification in woodchip bioreactors (WBRs) treating agricultural drainage and runoff is frequently carbon-limited due to the recalcitrance of carbon (C) in lignocellulosic woodchip biomass. Recent research has shown that redox fluctuations, achieved through periodic draining and re-flooding of WBRs, can increase nitrate removal rates by enhancing the release of labile C during oxic periods. While dying–rewetting (DRW) cycles appear to hold great promise for improving the performance of denitrifying WBRs, redox fluctuations in nitrogen-rich environments are commonly associated with enhanced emissions of the greenhouse gas nitrous oxide (N 2 O) due to inhibition of N 2 O reduction in microaerophilic conditions. Here, we evaluate the effects of oxic–anoxic cycling associated with DRW on the quantity and quality of C mobilized from woodchips, nitrate removal rates, and N 2 O accumulation in a complementary set of flow-through and batch laboratory bioreactors at 20 °C. Redox fluctuations significantly increased nitrate removal rates from 4.8–7.2 g N m −3 d −1 in a continuously saturated (CS) reactor to 9.8–11.2 g N m −3 d −1 24 h after a reactor is drained and re-saturated. Results support the theory that DRW conditions lead to faster NO 3 − removal rates by increasing mobilization ofmore »
-
Abstract Deep tropical soils with net anion exchange capacity can adsorb nitrate and might delay the eutrophication of surface waters that is often associated with many temperate croplands. We investigated anion exchange capacity and soil nitrate pools in deep soils in the Southern Brazilian Amazon, where conversion of tropical forest and Cerrado to intensive fertilized soybean and soybean-maize cropping expanded rapidly in the 2000s. We found that mean soil nitrate pools in the top 8 m increased from 143 kg N ha−1in forest to 1,052 in soybean and 1,161 kg N ha−1in soybean-maize croplands. This nitrate accumulation in croplands aligned with the estimated N surpluses in the croplands. Soil anion exchange capacity explained the magnitude of nitrate accumulation. High nitrate retention in soils was consistent with current low levels of streamwater nitrate exported from croplands. Soil exchange sites were far from saturation, which suggests that nitrate accumulation can continue for longer under current cropping practices, although mechanisms such as competition with other anions and preferential water flowpaths that bypass exchange sites could reduce the time to saturation.