skip to main content


Title: The free troposphere as a potential source of arctic boundary layer aerosol particles: Free Troposphere and Boundary Layer Arctic Aerosol
NSF-PAR ID:
10041578
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
13
ISSN:
0094-8276
Page Range / eLocation ID:
7053 to 7060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Desert dust accounts for a substantial fraction of the total atmospheric aerosol loading. It produces important impacts on the Earth system due to its nutrient content and interactions with radiation and clouds. However, current climate models greatly underestimate its airborne lifetime and transport. For instance, super coarse Saharan dust particles (with diameters greater than 10 µm) have repeatedly been detected in the Americas, but models fail to reproduce their transatlantic transport. In this study, we investigated the extent to which vertical turbulent mixing in the Saharan Air Layer (SAL) is capable of delaying particle deposition. We developed a theory based on the solution to a one‐dimensional dust mass balance and validated our results using large‐eddy simulation (LES) of a turbulent shear layer. We found that eddy motion can increase the lifetime of suspended particles by up to a factor of 2 when compared with laminar flows. Moreover, we found that the increase in a lifetime can be reliably estimated solely as a function of the particle Peclet number (the ratio of the mixing timescale to the settling timescale). By considering both the effects of turbulent mixing and dust asphericity, we explained to a large extent the presence of super coarse Saharan dust in the Caribbean observed during the Saharan Aerosol Long‐Range Transport and Aerosol‐Cloud‐Interaction Experiment (SALTRACE) field campaign. The theory for the lifetime of coarse particles in turbulent flows developed in this study is also expected to be applicable in other similar geophysical problems, such as phytoplankton sinking in the ocean mixed layer.

     
    more » « less
  2. null (Ed.)
    Abstract. The aerosol–planetary boundary layer (PBL) interaction wasproposed as an important mechanism to stabilize the atmosphere andexacerbate surface air pollution. Despite the tremendous progress made inunderstanding this process, its magnitude and significance still have largeuncertainties and vary largely with aerosol distribution and meteorologicalconditions. In this study, we focus on the role of aerosol verticaldistribution in thermodynamic stability and PBL development by jointly usingmicropulse lidar, sun photometer, and radiosonde measurements taken inBeijing. Despite the complexity of aerosol vertical distributions,cloud-free aerosol structures can be largely classified into three types:well-mixed, decreasing with height, and inverse structures. The aerosol–PBLrelationship and diurnal cycles of the PBL height and PM2.5 associated with these different aerosol vertical structures showdistinct characteristics. The vertical distribution of aerosol radiativeforcing differs drastically among the three types, with strong heating in thelower, middle, and upper PBL, respectively. Such a discrepancy in the heatingrate affects the atmospheric buoyancy and stability differently in the threedistinct aerosol structures. Absorbing aerosols have a weaker effect ofstabilizing the lower atmosphere under the decreasing structure than underthe inverse structure. As a result, the aerosol–PBL interaction can bestrengthened by the inverse aerosol structure and can be potentiallyneutralized by the decreasing structure. Moreover, aerosols can both enhanceand suppress PBL stability, leading to both positive and negativefeedback loops. This study attempts to improve our understanding of theaerosol–PBL interaction, showing the importance of the observationalconstraint of aerosol vertical distribution for simulating this interactionand consequent feedbacks. 
    more » « less
  3. Abstract. Observations collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) provide a detailed description of the impact of thermodynamic and kinematic forcings on atmospheric boundary layer (ABL) stability in the central Arctic. This study reveals that the Arctic ABL is stable and near-neutral with similar frequencies, and strong stability is the most persistent of all stability regimes. MOSAiC radiosonde observations, in conjunction with observations from additional measurement platforms, including a 10 m meteorological tower, ceilometer, microwave radiometer, and radiation station, provide insight into the relationships between atmospheric stability and various atmospheric thermodynamic and kinematic forcings of ABL turbulence and how these relationships differ by season. We found that stronger stability largely occurs in low-wind (i.e., wind speeds are slow), low-radiation (i.e., surface radiative fluxes are minimal) environments; a very shallow mixed ABL forms in low-wind, high-radiation environments; weak stability occurs in high-wind, moderate-radiation environments; and a near-neutral ABL forms in high-wind, high-radiation environments. Surface pressure (a proxy for synoptic staging) partially explains the observed wind speeds for different stability regimes. Cloud frequency and atmospheric moisture contribute to the observed surface radiation budget. Unique to summer, stronger stability may also form when moist air is advected from over the warmer open ocean to over the colder sea ice surface, which decouples the colder near-surface atmosphere from the advected layer, and is identifiable through observations of fog and atmospheric moisture.

     
    more » « less