Abstract The combination of inorganic and organic semiconductors in a heterojunction is considered a promising approach to overcome limitations of each individual material class. However, to date only few examples of improved (opto‐)electronic functionality have been realized with such hybrid heterojunctions. The key to unraveling the full potential offered by inorganic/organic semiconductor heterojunctions is the ability to deliberately control the interfacial electronic energy levels. Here, a universal approach to adjust the offset between the energy levels at inorganic/organic semiconductor interfaces is demonstrated: the interlayer method. A monolayer‐thick interlayer comprising strong electron donor or acceptor molecules is inserted between the two semiconductors and alters the energy level alignment due to charge transfer with the inorganic semiconductor. The general applicability of this method by tuning the energy levels of hydrogenated silicon relative to those of vacuum‐processed films of a molecular semiconductor as well as solution‐processed films of a polymer semiconductor is exemplified, and is shown that the energy level offset can be changed by up to 1.8 eV. This approach can be used to adjust the energy levels at the junction of a desired material pair at will, and thus paves the way for novel functionalities of optoelectronic devices.
more »
« less
Controlling Molecular Doping in Organic Semiconductors
Abstract The field of organic electronics thrives on the hope of enabling low‐cost, solution‐processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution‐processed p‐type doped polymeric semiconductors. Highlighted topics include how solution‐processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication—applications beyond those directly analogous to inorganic doping.
more »
« less
- Award ID(s):
- 1636385
- PAR ID:
- 10041830
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 29
- Issue:
- 42
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite having favorable optoelectronic and thermomechanical properties, the wide application of semiconducting polymers still suffers from limitations, particularly with regards to their processing in solution which necessitates toxic chlorinated solvents due to their intrinsic low solubility in common organic solvents. This work presents a novel greener approach to the fabrication of organic electronics without the use of toxic chlorinated solvents. Low‐molecular‐weight non‐toxic branched polyethylene (BPE) is used as a solvent to process diketopyrrolopyrrole‐based semiconducting polymers, then the solvent‐induced phase separation (SIPS) technique is adopted to produce films of semiconducting polymers from solution for the fabrication of organic field‐effect transistors (OFETs). The films of semiconducting polymers prepared from BPE using SIPS show a more porous granular morphology with preferential edge‐on crystalline orientation compared to the semiconducting polymer film processed from chloroform. OFETs based on the semiconducting films processed from BPE show similar device characteristics to those prepared from chloroform without thermal annealing, confirming the efficiency and suitability of BPE to replace traditional chlorinated solvents for green organic electronics. This new greener processing approach for semiconducting polymers is potentially compatible with different printing techniques and is particularly promising for the preparation of porous semiconducting layers and the fabrication of OFET‐based electronics.more » « less
-
Chemical doping is widely used to manipulate the electrical and thermoelectric properties of organic semiconductors, yet intelligent design of polymer–dopant systems remains elusive. It is challenging to predict the electrical and thermoelectric properties of doped organic semiconductors due to the large number of variables impacting these properties, including film morphology, dopant and polymer energetics, dopant size, and degree of polaron delocalization. Herein, a series of dopants with varying sizes and electron affinities (EAs) are combined with polymers of differing ionization energies (IEs) to investigate how the difference between polymer IE and dopant EA influences the doping efficiency and electrical conductivity, and how the dopant size influences the thermoelectric properties. Our experiments demonstrate that at low doping levels the doping efficiency strongly depends on the difference between the polymer IE and dopant EA; the effectiveness of doping on increasing electrical conductivity drastically decreases at high loadings for the molybdenum dithiolene complexes, while FeCl 3 remains effective at high loadings; and the large molybdenum complexes lead to more delocalized polarons as compared to FeCl 3 . To take advantage of the complementary doping characteristics of the molybdenum complexes and FeCl 3 , both dopants are employed simultaneously to reach high power factors at relatively low dopant concentrations.more » « less
-
Abstract Molecular orientation plays a critical role in controlling carrier transport in organic semiconductors (OSCs). However, this aspect has not been explored for surface doping of OSC thin films. The challenge lies in lack of methods to precisely modulate relative molecular orientation between the dopant and the OSC host. Here, the impact of molecular orientation on dopant–host electronic interactions by large modulation of conjugated polymer orientation via solution coating is reported. Combining synchrotron‐radiation X‐ray measurements with spectroscopic and electrical characterizations, a quantitative correlation between doping‐enhanced charge carrier mobility and the Herman's orientation parameter is presented. This direct correlation can be attributed to enhanced charge‐transfer interactions at host/dopant interface with increasing face‐on orientation of the polymer. These results demonstrate that the surface doping effect can be fundamentally manipulated by controlling the molecular orientation of the OSC layer, enabling optimization of carrier transport.more » « less
-
Abstract High‐mobility crystalline organic semiconductors are important for applications in advanced organic electronics and photonics. Photogeneration and transport of mobile photocarriers in these materials, although very important, remain underexplored. The photo‐Hall effect can be used to address the fundamental charge transport properties of these functional molecular materials, without the need for fabricating complex transistor devices or chemical doping. Here, a photo‐Hall effect is demonstrated in organic semiconductors, using a benchmark molecular system rubrene as an experimental platform. It is shown that this technique can be used to directly measure the charge carrier mobility and photocarrier density, decouple the surface and bulk transport phenomena, and thus significantly deepen the understanding of the mechanism of photoconductivity in these high‐performance molecular materials.more » « less