skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning
Domain adaptation problems arise in a variety of applications, where a training dataset from the source domain and a test dataset from the target domain typically follow different distributions. The primary difficulty in designing effective learning models to solve such problems lies in how to bridge the gap between the source and target distributions. In this paper, we provide comprehensive analysis of feature learning algorithms used in conjunction with linear classifiers for domain adaptation. Our analysis shows that in order to achieve good adaptation performance, the second moments of the source domain distribution and target domain distribution should be similar. Based on our new analysis, a novel extremely easy feature learning algorithm for domain adaptation is proposed. Furthermore, our algorithm is extended by leveraging multiple layers, leading to another feature learning algorithm. We evaluate the effectiveness of the proposed algorithms in terms of domain adaptation tasks on Amazon review and spam datasets from the ECML/PKDD 2006 discovery challenge.  more » « less
Award ID(s):
1356628 1302675
PAR ID:
10041959
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The 26th International Joint Conference on Artificial Intelligence (IJCAI 2017)
Page Range / eLocation ID:
1958 to 1964
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human activity recognition (HAR) from wearable sensors data has become ubiquitous due to the widespread proliferation of IoT and wearable devices. However, recognizing human activity in heterogeneous environments, for example, with sensors of different models and make, across different persons and their on-body sensor placements introduces wide range discrepancies in the data distributions, and therefore, leads to an increased error margin. Transductive transfer learning techniques such as domain adaptation have been quite successful in mitigating the domain discrepancies between the source and target domain distributions without the costly target domain data annotations. However, little exploration has been done when multiple distinct source domains are present, and the optimum mapping to the target domain from each source is not apparent. In this paper, we propose a deep Multi-Source Adversarial Domain Adaptation (MSADA) framework that opportunistically helps select the most relevant feature representations from multiple source domains and establish such mappings to the target domain by learning the perplexity scores. We showcase that the learned mappings can actually reflect our prior knowledge on the semantic relationships between the domains, indicating that MSADA can be employed as a powerful tool for exploratory activity data analysis. We empirically demonstrate that our proposed multi-source domain adaptation approach achieves 2% improvement with OPPORTUNITY dataset (cross-person heterogeneity, 4 ADLs), whereas 13% improvement on DSADS dataset (cross-position heterogeneity, 10 ADLs and sports activities). 
    more » « less
  2. Classification models trained on data from one source may underperform when tested on data acquired from different sources due to shifts in data distributions, which limit the models’ generalizability in real-world applications. Domain adaptation methods proposed to align such shifts in source-target data distributions use contrastive learning or adversarial techniques with or without internal cluster alignment. The intracluster alignment is performed using standalone k-means clustering on image embedding. This paper introduces a novel deep clustering approach to align cluster distributions in tandem with adapting source and target data distributions. Our method learns and aligns a mixture of cluster distributions in the unlabeled target domain with those in the source domain in a unified deep representation learning framework. Experiments demonstrate that intra-cluster alignment improves classification accuracy in nine out of ten domain adaptation examples. These improvements range between 0.3% and 2.0% compared to k-means clustering of embedding and between 0.4% and 5.8% compared to methods without class-level alignment. Unlike current domain adaptation methods, the proposed cluster distribution-based deep learning provides a quantitative and explainable measure of distribution shifts in data domains. We have publicly shared the source code for the algorithm implementation. 
    more » « less
  3. Domain adaptation addresses the challenge where the distribution of target inference data differs from that of the source training data. Recently, data privacy has become a significant constraint, limiting access to the source domain. To mitigate this issue, Source-Free Domain Adaptation (SFDA) methods bypass source domain data by generating source-like data or pseudo-labeling the unlabeled target domain. However, these approaches often lack theoretical grounding. In this work, we provide a theoretical analysis of the SFDA problem, focusing on the general empirical risk of the unlabeled target domain. Our analysis offers a comprehensive understanding of how representativeness, generalization, and variety contribute to controlling the upper bound of target domain empirical risk in SFDA settings. We further explore how to balance this trade-off from three perspectives: sample selection, semantic domain alignment, and a progressive learning framework. These insights inform the design of novel algorithms. Experimental results demonstrate that our proposed method achieves state-of-the-art performance on three benchmark datasets--Office-Home, DomainNet, and VisDA-C--yielding relative improvements of 3.2%, 9.1%, and 7.5%, respectively, over the representative SFDA method, SHOT. 
    more » « less
  4. null (Ed.)
    Adversarial learning has demonstrated good performance in the unsupervised domain adaptation setting, by learning domain-invariant representations. However, recent work has shown limitations of this approach when label distributions differ between the source and target domains. In this paper, we propose a new assumption, generalized label shift (GLS), to improve robustness against mismatched label distributions. GLS states that, conditioned on the label, there exists a representation of the input that is invariant between the source and target domains. Under GLS, we provide theoretical guarantees on the transfer performance of any classifier. We also devise necessary and sufficient conditions for GLS to hold, by using an estimation of the relative class weights between domains and an appropriate reweighting of samples. Our weight estimation method could be straightforwardly and generically applied in existing domain adaptation (DA) algorithms that learn domain-invariant representations, with small computational overhead. In particular, we modify three DA algorithms, JAN, DANN and CDAN, and evaluate their performance on standard and artificial DA tasks. Our algorithms outperform the base versions, with vast improvements for large label distribution mismatches. Our code is available at https://tinyurl.com/y585xt6j. 
    more » « less
  5. Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift.Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations.Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms. 
    more » « less