skip to main content


Title: Large Wind Shears and Their Implications for Diffusion in Regions With Enhanced Static Stability: The Mesopause and the Tropopause: WIND SHEAR AT MESOPAUSE AND TROPOPAUSE
NSF-PAR ID:
10042046
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
122
Issue:
18
ISSN:
2169-897X
Page Range / eLocation ID:
9579 to 9590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work evaluates zonal winds in both hemispheres near the polar winter mesopause in the Whole Atmosphere Community Climate Model (WACCM) with thermosphere‐ionosphere eXtension combined with data assimilation using the Data Assimilation Research Testbed (DART) (WACCMX+DART). We compare 14 years (2006–2019) of WACCMX+DART zonal mean zonal winds near 90 km to zonal mean zonal winds derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) geopotential height measurements during Arctic mid‐winter. 10 years (2008–2017) of WACCMX+DART zonal mean zonal winds are compared to SABER in the Antarctic mid‐winter. It is well known that WACCM, and WACCM‐X, zonal winds at the polar winter mesopause exhibit a strong easterly (westward) bias. One explanation for this is that the models omit higher order gravity waves (GWs), and thus the eastward drag caused by these GWs. We show for the first time that the model winds near the polar winter mesopause are in closer agreement with SABER observations when the winds near the stratopause are weak or reversed. The model and observed mesosphere and lower thermosphere winds agree most during dynamically disturbed times often associated with minor or major sudden stratospheric warming events. Results show that the deceleration of the stratospheric and mesospheric polar night jet allows enough eastward GWs to propagate into the mesosphere, driving eastward zonal winds that are in agreement with the observations. Thus, in both hemispheres, the winter polar night jet speed and direction near the stratopause may be a useful proxy for model fidelity in the polar winter upper mesosphere.

     
    more » « less
  2. Abstract. Using 11-year-long K Doppler lidar observations of temperatureprofiles in the mesosphere and lower thermosphere (MLT) between 85 and100 km, conducted at the Arecibo Observatory, Puerto Rico(18.35 N, 66.75 W), seasonalvariations of mean temperature, the squared Brunt–Väisäläfrequency, N2, and the gravity wave potential energy (GWPE) are estimated in a compositeyear. The following unique features are obtained. (1) The mean temperaturestructure shows similar characteristics to an earlier report based on a smallerdataset. (2) Temperature inversion layers (TILs) occur at 94–96 km inspring, at ∼92 km in summer, and at ∼91 km in early autumn.(3) The first complete range-resolved climatology of GWPE derived from temperature data in the tropical MLT exhibits analtitude-dependent combination of annual oscillation (AO) and semiannualoscillation (SAO). The maximum occurs in spring and the minimum in summer, and asecond maximum is in autumn and a second minimum in winter. (4) The GWPE perunit volume reduces below ∼97 km altitude in all seasons. Thereduction of GWPE is significant at and below the TILs but becomes faintabove; this provides strong support for the mechanism that the formation ofupper mesospheric TILs is mainly due to the reduction of GWPE. The climatologyof GWPE shows an indeed pronounced altitudinal and temporal correlation withthe wind field in the tropical mesopause region published in the literature.This suggests the GW activity in the tropical mesopause region should bemanifested mainly by the filtering effect of the critical level of the localbackground wind and the energy conversion due to local dynamical instability.

     
    more » « less