skip to main content


Title: High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica: HIGH-RESOLUTION SUB-ICE-SHELF SEAFLOOR IMAGERY
NSF-PAR ID:
10042132
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
122
Issue:
9
ISSN:
2169-9003
Page Range / eLocation ID:
1698 to 1714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ocean-induced basal melting is directly and indirectly responsible for much of the Amundsen Sea Embayment ice loss in recent decades, but the total magnitude and spatiotemporal evolution of this melt is poorly constrained. To address this problem, we generated a record of high-resolution Digital Elevation Models (DEMs) for Pine Island Glacier (PIG) using commercial sub-meter satellite stereo imagery and integrated additional 2002–2015 DEM/altimetry data. We implemented a Lagrangian elevation change (Dh/Dt) framework to estimate ice shelf basal melt rates at 32–256-m resolution. We describe this methodology and consider basal melt rates and elevation change over the PIG shelf and lower catchment from 2008–2015. We document the evolution of Eulerian elevation change (dh/dt) and upstream propagation of thinning signals following the end of rapid grounding line retreat around 2010. Mean full-shelf basal melt rates for the 2008–2015 period were ~82–93 Gt/yr, with ~ 200–250 m/yr basal melt rates within large channels near the grounding line, ~ 10–30 m/yr over the main shelf, and ~ 0–10 m/yr over the North and South shelves, with the notable exception of a small area with rates of ~ 50–100 m/yr near the grounding line of a fast-flowing tributary on the South shelf. The observed basal melt rates show excellent agreement with, and provide context for, in situ basal melt rate observations. We also document the relative melt rates for km-scale basal channels and keels at different locations on the shelf and consider implications for ocean circulation and heat content. These methods and results offer new indirect observations of ice-ocean interaction and constraints on the processes driving sub-shelf melting beneath vulnerable ice shelves in West Antarctica.

     
    more » « less
  2. Abstract

    Tabular calving events occur from Antarctica's large ice shelves only every few decades, and are preceded by rift propagation. We used high‐resolution imagery and ICESat‐2 data to determine the propagation rates for the three active rifts on Amery Ice Shelf (AIS; T1, T2, and E3) and observe the calving of D‐28 on September 25, 2019 along T1. AIS front advance accelerated downstream of T1 in the years before calving, possibly increasing stress at the rift tip. T1 experienced significant acceleration for 12 days before calving, coinciding with a jump in propagation of E3. ICESat‐2's high resolution and repeat acquisitions every 91 days allowed for analysis of the ice front before and after calving, and rift detection where it was not visible in imagery as a ∼1 m surface depression, suggesting that it propagates as a basal fracture. Our results show that ICESat‐2 can provide process‐scale information about iceberg calving.

     
    more » « less
  3. Abstract

    High Salinity Shelf Water (HSSW) formed in the Ross Sea of Antarctica is a precursor to Antarctic Bottom Water (AABW), a water mass that constitutes the bottom limb of the global overturning circulation. HSSW production rates are poorly constrained, as in-situ observations are scarce. Here, we present high-vertical-and-temporal-resolution salinity time series collected in austral winter 2017 from a mooring in Terra Nova Bay (TNB), one of two major sites of HSSW production in the Ross Sea. We calculate an annual-average HSSW production rate of ~0.4Sv(106m3s−1), which we use to ground truth additional estimates across 2012–2021 made from parametrized net surface heat fluxes. We find sub-seasonal and interannual variability on the order of$$0.1$$0.1$${Sv}$$Sv, with a strong dependence on variability in open-water area that suggests a sensitivity of TNB HSSW production rates to changes in the local wind regime and offshore sea ice pack.

     
    more » « less
  4. Basal channels, which are troughs carved into the undersides of ice shelves by buoyant plumes of water, are modulators of ice-shelf basal melt and structural stability. In this study, we track the evolution of 12 large basal channels beneath ice shelves of the Amundsen and Bellingshausen seas region in West Antarctica using the Landsat record since its start in the 1970s through 2020. We observe examples of channel growth, interactions with ice-shelf features, and systematic changes in sinuosity that give insight into the life cycles of basal channels. We use the last two decades of the record, combined with contemporary ice-flow velocity datasets, to separate channel-path evolution into components related to advection by ice flow and those controlled by other forcings, such as ocean melt or surface accumulation. Our results show that ice-flow-independent lateral channel migration is overwhelmingly to the left when viewed down-flow, suggesting that it is dominated by Coriolis-influenced ocean melt. By applying a model of channel-path evolution dominantly controlled by ice flow and ocean melt, we show that the majority of channels surveyed exhibit non-steady behavior that serves as a novel proxy for increased ocean forcing in West Antarctica starting at least in the early 1970s. 
    more » « less
  5. null (Ed.)
    Abstract. In the 2019/2020 austral summer, the surface melt duration andextent on the northern George VI Ice Shelf (GVIIS) was exceptional comparedto the 31 previous summers of distinctly lower melt. This finding is basedon analysis of near-continuous 41-year satellite microwave radiometer andscatterometer data, which are sensitive to meltwater on the ice shelfsurface and in the near-surface snow. Using optical satellite imagery fromLandsat 8 (2013 to 2020) and Sentinel-2 (2017 to 2020), record volumes ofsurface meltwater ponding were also observed on the northern GVIIS in2019/2020, with 23 % of the surface area covered by 0.62 km3 of ponded meltwater on 19 January. These exceptional melt andsurface ponding conditions in 2019/2020 were driven by sustained airtemperatures ≥0 ∘C for anomalously long periods (55 to 90 h)from late November onwards, which limited meltwater refreezing.The sustained warm periods were likely driven by warm, low-speed (≤7.5 m s−1) northwesterly and northeasterly winds and not by foehn windconditions, which were only present for 9 h total in the 2019/2020 meltseason. Increased surface ponding on ice shelves may threaten theirstability through increased potential for hydrofracture initiation; a riskthat may increase due to firn air content depletion in response tonear-surface melting. 
    more » « less