skip to main content


Title: Internal consistency of the inorganic carbon system in the Arctic Ocean: Arctic Ocean CO2internal consistency
NSF-PAR ID:
10042470
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
15
Issue:
10
ISSN:
1541-5856
Page Range / eLocation ID:
887 to 896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening.

     
    more » « less
  2. Highly reactive benzyl radicals are generated by electron dissociative attachment to benzyl chloride doped into a neon–hydrogen–helium discharge and immediately cooled to T rot = 15 K in a high density, supersonic slit expansion environment. The sub-Doppler spectra are fit to an asymmetric-top rotational Hamiltonian, thereby yielding spectroscopic constants for the ground ( v = 0) and first excited ( v = 1, ν 3 , ν 4 ) vibrational levels of the ground electronic state. The rotational constants obtained for the ground state are in good agreement with previous laser induced fluorescence measurements (LIF), with vibrational band origins ( ν 3 = 3073.2350 ± 0.0006 cm −1 , ν 4 = 3067.0576 ± 0.0006 cm −1 ) in agreement with anharmonically corrected density functional theory calculations. To assist in detection of benzyl radical in the interstellar medium, we have also significantly improved the precision of the ground state rotational constants through combined analysis of the ground state IR and LIF combination differences. Of dynamical interest, there is no evidence in the sub-Doppler spectra for tunneling splittings due to internal rotation of the CH 2 methylene subunit, which implies a significant rotational barrier consistent with partial double bond character in the CC bond. This is further confirmed with high level ab initio calculations at the CCSD(T)-f12b/ccpVdZ-f12 level, which predict a zero-point energy corrected barrier to internal rotation of Δ E tun ≈ 11.45 kcal mol −1 or 4005 cm −1 . In summary, the high-resolution infrared spectra are in excellent agreement with simple physical organic chemistry pictures of a strongly resonance-stabilized benzyl radical with a nearly rigid planar structure due to electron delocalization around the aromatic ring. 
    more » « less
  3. Correction for ‘Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν 3 / ν 4 CH stretch modes and CH 2 internal rotor dynamics of benzyl radical’ by A. Kortyna et al. , Phys. Chem. Chem. Phys. , 2017, 19 , 29812–29821. 
    more » « less
  4. Key Points Mackenzie River biogeochemical discharge decreases the southeastern Beaufort Sea carbon sink Terrestrial dissolved inorganic carbon (DIC) is the primary driver of outgassing events in the SBS, followed by terrestrial DOC Interannual variability in river discharge modulates localized air‐sea CO 2 flux 
    more » « less