skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Internal consistency of the inorganic carbon system in the Arctic Ocean: Arctic Ocean CO2internal consistency
NSF-PAR ID:
10042470
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
15
Issue:
10
ISSN:
1541-5856
Page Range / eLocation ID:
887 to 896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening.

     
    more » « less
  2. Abstract

    The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.

     
    more » « less
  3. Key Points Mackenzie River biogeochemical discharge decreases the southeastern Beaufort Sea carbon sink Terrestrial dissolved inorganic carbon (DIC) is the primary driver of outgassing events in the SBS, followed by terrestrial DOC Interannual variability in river discharge modulates localized air‐sea CO 2 flux 
    more » « less