skip to main content


Title: Solution Monolayer Epitaxy for Tunable Atomically Sharp Oxide Interfaces
Abstract

Interfaces play an important role in a variety of devices including transistors, solar cells, and memory components. Atomically sharp interfaces are essential to avoid charge traps that hamper efficient device operation. Sharp interfaces usually require thin‐film fabrication techniques involving ultrahigh vacuum and high substrate temperatures. A new self‐limiting wet chemical process for deposition of epitaxial layers from alkoxide precursors is presented. This method is fast, cheap, and yields perfect interfaces as validated by various analysis techniques. It allows the growth of heterostructures with half‐unit‐cell resolution. The method is demonstrated by designing a hole‐type oxide interface SrTiO3/BaO/LaAlO3. It is shown that transport through this interface exhibits properties of mixed electron–hole contributions with hole mobility exceeding that of electrons.

 
more » « less
NSF-PAR ID:
10042845
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
4
Issue:
22
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-dimensional electron gas or hole gas (2DEG or 2DHG) and their functionalities at artificial heterostructure interfaces have attracted extensive attention in recent years. Many theoretical calculations and recent experimental studies have shown the formation of alternating 2DEG and 2DHG at ferroelectric/insulator interfaces, such as BiFeO3/TbScO3, depending on the different polarization states. However, a direct observation based on the local charge distribution at the BiFeO3/TbScO3interface has yet to be explored. Herein we demonstrate the direct observation of 2DHG and 2DEG at BiFeO3/TbScO3interface using four-dimensional scanning transmission electron microscopy and Bader charge analysis. The results show that the measured charge state of each Fe/O columns at the interface undergoes a significant increase/reduction for the polarization state pointing away/toward the interface, indicating the existence of 2DHG/2DEG. This method opens up a path of directly observing charge at atomic scale and provides new insights into the design of future electronic nanodevices.

     
    more » « less
  2. SUMMARY

    SS-precursor imaging is used to image sharp interfaces within Earth’s mantle. Current SS-precursor techniques require tightly bandpassed signals (e.g. 0.02–0.05 Hz), limiting both vertical and horizontal resolutions. Higher frequency content would allow for the detection of finer structure in and around the mantle transition zone (MTZ). Here, we present a new SS-precursor deconvolution technique based on multiple-taper correlation (MTC). We show that applying MTC to SS-precursor deconvolution can increase the frequency cut-off up to 0.5 Hz, which potentially sharpens vertical resolution to ∼10 km. Furthermore, the high-pass frequency can be lowered (≪ 0.01 Hz), allowing more long-period energy to be included in the calculation, to better constrain the signal and reduce side lobes. Our method is benchmarked on full-waveform synthetic seismograms computed via AxiSEM3D for the PREM 1-D Earth model. We apply our novel MTC-SS-precursor deconvolution to ∼7000 seismograms recorded at broad-band borehole sensors of the Global Seismographic Network with source–receiver bounce points in the North-Central Pacific Ocean. The MTZ in this region appears to be thin, which agrees with previous results. We do not observe the 520-km discontinuity in our SS-precursor estimates. Additionally, we detect a low-velocity zone above the MTZ to the north of the Hawaiian Islands that has previously been inferred from asymmetry in side lobe amplitudes. Our high-frequency analysis demonstrates this feature to be a sharp interface (≤ 10-km thickness), rather than a thick wave speed gradient.

     
    more » « less
  3. Interactions between an evolving solid and inviscid flow can result in substantial computational complexity, particularly in circumstances involving varied boundary conditions between the solid and fluid phases. Examples of such interactions include melting, sublimation, and deflagration, all of which exhibit bidirectional coupling, mass/heat transfer, and topological change of the solid–fluid interface. The diffuse interface method is a powerful technique that has been used to describe a wide range of solid-phase interface-driven phenomena. The implicit treatment of the interface eliminates the need for cumbersome interface tracking, and advances in adaptive mesh refinement have provided a way to sufficiently resolve diffuse interfaces without excessive computational cost. However, the general scale-invariant coupling of these techniques to flow solvers has been relatively unexplored. In this work, a robust method is presented for treating diffuse solid–fluid interfaces with arbitrary boundary conditions. Source terms defined over the diffuse region mimic boundary conditions at the solid–fluid interface, and it is demonstrated that the diffuse length scale has no adverse effects. To show the efficacy of the method, a one-dimensional implementation is introduced and tested for three types of boundaries: mass flux through the boundary, a moving boundary, and passive interaction of the boundary with an incident acoustic wave. Two-dimensional results are presented as well these demonstrate expected behavior in all cases. Convergence analysis is also performed and compared against the sharp-interface solution, and linear convergence is observed. This method lays the groundwork for the extension to viscous flow and the solution of problems involving time-varying mass-flux boundaries.

     
    more » « less
  4. Abstract

    Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.

     
    more » « less
  5. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less