skip to main content


Title: Innovation Self-Efficacy: A Very Brief Measure for Engineering Students.
When survey time is limited, education researchers may be faced with the choice of using an extremely brief measure of innovativeness or using no measure at all. To meet the need for a very brief measure, a 5-item innovation self-efficacy (ISE.5) scale was developed using the 19- item Dyer et al. Innovative Behavior Scale (IBS) as a starting point, adapted for undergraduate engineering students, and then condensed using confirmatory factor analysis. The ISE.5 measures innovation self-efficacy as a unitary construct drawn from Dyer et al.’s five innovative behavior components (Questioning, Observing, Experimenting, Networking Ideas and Associational Thinking) and has good internal and external validity as well as good test-retest reliability. The ISE.5 (as a measure of innovation self-efficacy) is shown to be an important mediator between innovation interests and a desire to pursue innovative work as a career postgraduation. This mediator relationship is consistent among important sub-populations of engineering students such as females, underrepresented minorities and first generation college students. While not a substitute for a full multi-factor innovation assessment tool, the ISE.5 can serve as an important indicator of innovation self-efficacy among an undergraduate engineering student population.  more » « less
Award ID(s):
1636442
NSF-PAR ID:
10043009
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings for the American Society for Engineering Education Annual Conference, June 25-28. Columbus, OH.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores a learning environment that may foster innovation in the engineering curriculum. In this study, the innovation self-efficacy of undergraduate environmental engineering students is explored in a target course before and after a curricular intervention which has been shown to have the potential to enhance innovation self-efficacy. A design mentor and an education mentor outside of the course supported the students through their engineering design process. During the start and end of this curricular intervention, a survey consisting of the Very Brief Innovation Self-Efficacy scale (ISE.5), the Innovation Interests scale (INI), and the Career Goals: Innovative Work scale (CGIW) was administered to measure students’ shift in: 1) Innovation Self-Efficacy, 2) Innovation Interests, and 3) Innovative Work. Formal feedback from the mentors was utilized in interpreting the survey outcomes. Results generated from this survey show a modest increase in innovation self-efficacy. Nevertheless, less impact was found compared to the previous year when innovation attitudes were weaker in the pre-survey. 
    more » « less
  2. This study examines the relationship between participation in extracurricular college activities and its possible impact on students’ career interests in entrepreneurship and innovation. This work draws from the Engineering Majors Survey (EMS), focusing on innovation self-efficacy and how it may be impacted by participation in various extracurricular college activities. The term self-efficacy as developed by Albert Bandura is defined as “people’s judgment of their capabilities to organize and execute courses of action required to attain designated types of performances” (Bandura, 1986, p.391). Innovation self-efficacy is a variable consisting of six items that correspond to Dyer’s five discovery skills seen as important for innovative behavior. In order to investigate the relationship between participation in certain activities and innovation self-efficacy, the 20 activities identified in the EMS survey were grouped thematically according to their relevance to entrepreneurship-related topics. Students were divided into two groups using K-means cluster analysis according to their innovation selfefficacy (ISE.6) score. Cluster one (C1) contained the students with higher ISE.6 scores, Cluster two (C2) included the students with lower innovation self-efficacy scores. This preliminary research focused on descriptive analyses while also looking at different background characteristics such as gender, academic status and underrepresented minority status (URM). The results show that students in C1 (high ISE.6) have significantly greater interest in starting an organization (78.1%) in comparison to C2 students (21.9%) (X²=81.11, p=.000, Cramer’s V= .124). At the same time, male students reported significantly higher ISE.6 scores (M=66.70, SD=17.53) than female students (M=66.70, SD=17.53) t(5192)=-5.220 p=.000 and stronger intentions to start an organization than female students (15% and 6.1 % respectively). Cluster affiliation representing innovation self-efficacy as well as gender seems to play a role when looking at career interest in entrepreneurship. According to Social Cognitive Career Theory, self-efficacy is influenced by learning experiences. In this work activities referring to hands-on activities in entrepreneurship and innovation are highly correlated with ISE.6 (r=.206, p=.000), followed by non-hands-on exposure to entrepreneurship and innovation. At the same time, students in C1 participated almost twice as often in hands-on activities in entrepreneurship and innovation (28.6%) as compared to students in C2 (15.2%). Interestingly in C1, there were no gender differences in participation in hands-on activities in entrepreneurship and innovation. Overall, female students (M=4.66, SD=2.5) participated in significantly more activities than male students (M=3.9, SD=2.64), t(5192)=9.65 p=.000. All in all, these results reveal interesting insights into the potential benefits of taking part in innovation and entrepreneurship-related activities and their impact on students’ innovation self-efficacy and interests in corresponding careers. 
    more » « less
  3. null (Ed.)
    The purpose of this study is to re-examine the validity evidence of the engineering design self-efficacy (EDSE) scale scores by Carberry et al. (2010) within the context of secondary education. Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task. In engineering education, significant efforts have been made to understand the role of self-efficacy for students considering its positive impact on student outcomes such as performance and persistence. These studies have investigated and developed measures for different domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific self-efficacy). The EDSE scale is a frequently cited measure that examines task-specific self-efficacy within the domain of engineering design. The original scale contains nine items that are intended to represent the engineering design process. Initial score validity evidence was collected using a sample consisting of 202 respondents with varying degrees of engineering experience including undergraduate/graduate students and faculty members. This scale has been primarily used by researchers and practitioners with engineering undergraduate students to assess changes in their engineering design self-efficacy as a result of active learning interventions, such as project-based learning. Our work has begun to experiment using the scale in a secondary education context in conjunction with an increased introduction to engineering in K-12 education. Yet, there still is a need to examine score validity and reliability of this scale in non-undergraduate populations such as secondary school student populations. This study fills this important gap by testing construct validity of the original nine items of the EDSE scale, supporting proper use of the scale for researchers and practitioners. This study was conducted as part of a larger, e4usa project investigating the development and implementation of a yearlong project-based engineering design course for secondary school students. Evidence of construct validity and reliability was collected using a multi-step process. First, a survey that includes the EDSE scale was administered to the project participating students at nine associated secondary schools across the US at the beginning of Spring 2020. Analysis of collected data is in progress and includes Exploratory Factor Analysis (EFA) on the 137 responses. The evidence of score reliability will be obtained by computing the internal consistency of each resulting factor. The resulting factor structure and items will be analyzed by comparing it with the original EDSE scale. The full paper will provide details about the psychometric evaluation of the EDSE scale. The findings from this paper will provide insights on the future usage of the EDSE scale in the context of secondary engineering education. 
    more » « less
  4. It is critical to incorporate inclusive practices in the engineering curriculum which prepares neurodiverse students to achieve their full potential in the workforce. This work-in-progress paper seeks to capitalize on the unique strengths of marginalized neurodiverse engineering students. In this study, the innovation self-efficacy of engineering students who self-identify as neurodiverse is explored before and after a curricular intervention, which has been shown to have the potential to enhance innovation self-efficacy, in an environmental engineering target course. A previously validated Likert-type survey was used, which included the Very Brief Innovation Self-Efficacy scale, the Innovation Interests scale, and the Career Goals: Innovative Work scale. Among the 47 responses on the pre-survey, 13% of the students self-identified as neurodiverse and an additional 19% indicated that they were maybe neurodiverse. This included a much higher percentage of female than male students in the course (23% vs. 5% neurodiverse). There were no significant differences in the pre-survey or post-survey in the innovation self- efficacy and innovation interest among students who self-identified as neurodiverse, maybe neurodiverse, and not neurodiverse. Career goals based on the innovative work scale differed in the pre-survey among the three groups, being lowest among students who self-identified as maybe neurodiverse; there were no differences among the groups in the post-survey. It appeared that there were gains in the innovation self-efficacy between the pre and post-survey among the students who self-identified as neurodiverse and maybe neurodiverse but these differences were not statistically significant. A limitation of the study was the lack of ability to pair the data for individual students and a low number of neurodiverse students in the dataset. This preliminary work calls attention to the need to consider neurodiverse students in our instructional practices. In the future, we hope the research will expand our understanding of a neurodiverse-friendly curricular design in preparation for engineering students with autism spectrum disorder and other types of neurodiversity for the workforce, as well as assisting engineering educators in the adoption of practices that have the tendency to enhance innovation self-efficacy in neurodiverse students. 
    more » « less
  5. This research to practice full paper presents the work of an academic-industry research partnership to explore the internship experiences of summer interns at a large global engineering company. Engineering internships give students the opportunity to apply the engineering skills they have been learning to real products and can have a high impact on innovation and engineering task self-efficacy. The relationship between internships and innovation and engineering task selfefficacy matters because self-efficacy is an important predictor of major and career choice. Innovation interests is another measure that measures the individual’s interest in innovative behaviors, unlike ISE which measures their confidence in practicing these behaviors. This paper focuses on understanding the relationship between internship work assignment and supervisor interaction and innovation interests. Furthermore, the relationship between the internship experience and the intern’s likelihood of accepting a job offer from the same company is explored. A survey administered to engineering interns (N = 115) at the end of their summer 2017 internship at a large global engineering company forms the main dataset for this work. Keywords—Engineering Education Research, Industrial Partnerships and Collaborations, Engineering Education Research, Innovation and Creativity 
    more » « less