This paper explores a learning environment that may foster innovation in the engineering curriculum. In this study, the innovation self-efficacy of undergraduate environmental engineering students is explored in a target course before and after a curricular intervention which has been shown to have the potential to enhance innovation self-efficacy. A design mentor and an education mentor outside of the course supported the students through their engineering design process. During the start and end of this curricular intervention, a survey consisting of the Very Brief Innovation Self-Efficacy scale (ISE.5), the Innovation Interests scale (INI), and the Career Goals: Innovative Work scale (CGIW) was administered to measure students’ shift in: 1) Innovation Self-Efficacy, 2) Innovation Interests, and 3) Innovative Work. Formal feedback from the mentors was utilized in interpreting the survey outcomes. Results generated from this survey show a modest increase in innovation self-efficacy. Nevertheless, less impact was found compared to the previous year when innovation attitudes were weaker in the pre-survey.
more »
« less
Innovation Self-Efficacy: A Very Brief Measure for Engineering Students.
When survey time is limited, education researchers may be faced with the choice of using an extremely brief measure of innovativeness or using no measure at all. To meet the need for a very brief measure, a 5-item innovation self-efficacy (ISE.5) scale was developed using the 19- item Dyer et al. Innovative Behavior Scale (IBS) as a starting point, adapted for undergraduate engineering students, and then condensed using confirmatory factor analysis. The ISE.5 measures innovation self-efficacy as a unitary construct drawn from Dyer et al.’s five innovative behavior components (Questioning, Observing, Experimenting, Networking Ideas and Associational Thinking) and has good internal and external validity as well as good test-retest reliability. The ISE.5 (as a measure of innovation self-efficacy) is shown to be an important mediator between innovation interests and a desire to pursue innovative work as a career postgraduation. This mediator relationship is consistent among important sub-populations of engineering students such as females, underrepresented minorities and first generation college students. While not a substitute for a full multi-factor innovation assessment tool, the ISE.5 can serve as an important indicator of innovation self-efficacy among an undergraduate engineering student population.
more »
« less
- Award ID(s):
- 1636442
- PAR ID:
- 10043009
- Date Published:
- Journal Name:
- Proceedings for the American Society for Engineering Education Annual Conference, June 25-28. Columbus, OH.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research explored potential relationships between the innovation self-efficacy (ISE) of engineering students and their artistic creativity and life experiences revealed on an ice-breaker assignment. In a community-building assignment, students were directed to introduce themselves through cartoon monster drawings that communicated various personal attributes (such as the number of languages they speak, and the number of states visited). Previous research has found that multicultural experiences can shape feelings of self-efficacy concerning innovation and creativity. This pilot study was conducted in a single junior-level course for environmental engineering students. The innovation self-efficacy of participants was measured using a survey that included items from the Very Brief Innovation Self-Efficacy scale (ISE.6), the Innovation Interests scale (INI), and the Career Goals: Innovative Work scale (IW). The drawings were analyzed for Artistic Effort (AE) and Creative Work (CW) by engineering and art evaluators, respectively. The ISE survey results were compared with the AE and CW scores and the correlations with travel, gender, and multilingualism on creativity attributes were explored. A strong correlation between CW scores and AE scores was observed. A negative correlation between CW and ISE.6 was found. The CW scores were significantly different between female and male students, except for black/white shading in the cartoon drawings. There were no significant differences between the AE scores for female versus male students. Our results do not support the existence of a correlation between multilingualism and travel with artistic creativity and innovation self-efficacy attributes. Overall, we did not find that the students’ artistic creativity or life experiences revealed through the self-portrait activity provided insights into innovation attitudes.more » « less
-
This project evaluates if and how an intervention to design a K-12 STEM activity related to water chemistry impacts the innovation self-efficacy (ISE) of junior students enrolled in a required environmental engineering course. ISE is defined as having five behavioral components: questioning, observing, experimenting, idea networking, and associational thinking. In this course, the K-12 STEM activity is designed with a team of 3 to 5 students. The activity requires that the students develop an innovative activity that demonstrates environmental engineering concepts such as acid mine drainage, ocean acidification, and contaminant removal. The student projects are scaffolded throughout the 10 weeks via intermediate submissions and meetings with a K-12 STEM teacher and design mentors. In fall 2022 a pilot of the study was conducted and relied on a quantitative survey instrument that measured ISE, innovation interest (INT), and future innovative work interest (IW). Based on the preliminary findings of factor structure, item reliability, and face validity evaluated by two faculty and two undergraduate students, small changes were made to the quantitative assessment instrument. The revised survey was deployed in the fall of 2023 in a required junior-level test course and a senior-level control course. The senior-level control course consisted of students who took the junior-level course with the K-12 STEM activity in the previous year. In 2023 the K-12 STEM activity intervention also included additional scaffolding through the addition of 3 team-based and 2 individual reflections to understand the process of ISE formation. Pre-post comparisons of the quantitative survey items will be conducted for individual students in the test and control courses. Team and individual reflections from the test course will be analyzed after the course. Potential demographic differences in ISE will be explored. Potential team-level influences will also be evaluated to understand the impact of a team’s ISE score on enhancing an individual team member’s ISE gain. Focus groups and individual interviews with students who participated in the test course will take place in spring 2024. The ISE, INT, and IW of environmental engineering students will be further assessed in spring 2024 through the ISE survey in the environmental engineering capstone design course and a junior-level creativity and entrepreneurship design course. This assessment will compare two different learning experiences on ISE, INT, and IW, the K-12 STEM education activity design with a semester-long, group-based technical design experience. Preliminary results will be presented in the NSF Grantees Poster Session.more » « less
-
This study examines the relationship between participation in extracurricular college activities and its possible impact on students’ career interests in entrepreneurship and innovation. This work draws from the Engineering Majors Survey (EMS), focusing on innovation self-efficacy and how it may be impacted by participation in various extracurricular college activities. The term self-efficacy as developed by Albert Bandura is defined as “people’s judgment of their capabilities to organize and execute courses of action required to attain designated types of performances” (Bandura, 1986, p.391). Innovation self-efficacy is a variable consisting of six items that correspond to Dyer’s five discovery skills seen as important for innovative behavior. In order to investigate the relationship between participation in certain activities and innovation self-efficacy, the 20 activities identified in the EMS survey were grouped thematically according to their relevance to entrepreneurship-related topics. Students were divided into two groups using K-means cluster analysis according to their innovation selfefficacy (ISE.6) score. Cluster one (C1) contained the students with higher ISE.6 scores, Cluster two (C2) included the students with lower innovation self-efficacy scores. This preliminary research focused on descriptive analyses while also looking at different background characteristics such as gender, academic status and underrepresented minority status (URM). The results show that students in C1 (high ISE.6) have significantly greater interest in starting an organization (78.1%) in comparison to C2 students (21.9%) (X²=81.11, p=.000, Cramer’s V= .124). At the same time, male students reported significantly higher ISE.6 scores (M=66.70, SD=17.53) than female students (M=66.70, SD=17.53) t(5192)=-5.220 p=.000 and stronger intentions to start an organization than female students (15% and 6.1 % respectively). Cluster affiliation representing innovation self-efficacy as well as gender seems to play a role when looking at career interest in entrepreneurship. According to Social Cognitive Career Theory, self-efficacy is influenced by learning experiences. In this work activities referring to hands-on activities in entrepreneurship and innovation are highly correlated with ISE.6 (r=.206, p=.000), followed by non-hands-on exposure to entrepreneurship and innovation. At the same time, students in C1 participated almost twice as often in hands-on activities in entrepreneurship and innovation (28.6%) as compared to students in C2 (15.2%). Interestingly in C1, there were no gender differences in participation in hands-on activities in entrepreneurship and innovation. Overall, female students (M=4.66, SD=2.5) participated in significantly more activities than male students (M=3.9, SD=2.64), t(5192)=9.65 p=.000. All in all, these results reveal interesting insights into the potential benefits of taking part in innovation and entrepreneurship-related activities and their impact on students’ innovation self-efficacy and interests in corresponding careers.more » « less
-
It is critical to incorporate inclusive practices in the engineering curriculum which prepares neurodiverse students to achieve their full potential in the workforce. This work-in-progress paper seeks to capitalize on the unique strengths of marginalized neurodiverse engineering students. In this study, the innovation self-efficacy of engineering students who self-identify as neurodiverse is explored before and after a curricular intervention, which has been shown to have the potential to enhance innovation self-efficacy, in an environmental engineering target course. A previously validated Likert-type survey was used, which included the Very Brief Innovation Self-Efficacy scale, the Innovation Interests scale, and the Career Goals: Innovative Work scale. Among the 47 responses on the pre-survey, 13% of the students self-identified as neurodiverse and an additional 19% indicated that they were maybe neurodiverse. This included a much higher percentage of female than male students in the course (23% vs. 5% neurodiverse). There were no significant differences in the pre-survey or post-survey in the innovation self- efficacy and innovation interest among students who self-identified as neurodiverse, maybe neurodiverse, and not neurodiverse. Career goals based on the innovative work scale differed in the pre-survey among the three groups, being lowest among students who self-identified as maybe neurodiverse; there were no differences among the groups in the post-survey. It appeared that there were gains in the innovation self-efficacy between the pre and post-survey among the students who self-identified as neurodiverse and maybe neurodiverse but these differences were not statistically significant. A limitation of the study was the lack of ability to pair the data for individual students and a low number of neurodiverse students in the dataset. This preliminary work calls attention to the need to consider neurodiverse students in our instructional practices. In the future, we hope the research will expand our understanding of a neurodiverse-friendly curricular design in preparation for engineering students with autism spectrum disorder and other types of neurodiversity for the workforce, as well as assisting engineering educators in the adoption of practices that have the tendency to enhance innovation self-efficacy in neurodiverse students.more » « less