skip to main content


Title: Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development: Podocyte Development and Disease in Organoids
NSF-PAR ID:
10043027
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
STEM CELLS
Volume:
35
Issue:
12
ISSN:
1066-5099
Page Range / eLocation ID:
2366 to 2378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Congenital heart defects constitute the most common human birth defect, however understanding of how these disorders originate is limited by our ability to model the human heart accurately in vitro. Here we report a method to generate developmentally relevant human heart organoids by self-assembly using human pluripotent stem cells. Our procedure is fully defined, efficient, reproducible, and compatible with high-content approaches. Organoids are generated through a three-step Wnt signaling modulation strategy using chemical inhibitors and growth factors. Heart organoids are comparable to age-matched human fetal cardiac tissues at the transcriptomic, structural, and cellular level. They develop sophisticated internal chambers with well-organized multi-lineage cardiac cell types, recapitulate heart field formation and atrioventricular specification, develop a complex vasculature, and exhibit robust functional activity. We also show that our organoid platform can recreate complex metabolic disorders associated with congenital heart defects, as demonstrated by an in vitro model of pregestational diabetes-induced congenital heart defects.

     
    more » « less
  2. The mechanism that causes the Alzheimer’s disease (AD) pathologies, including amyloid plaque, neurofibrillary tangles, and neuron death, is not well understood due to the lack of robust study models for human brain. Three-dimensional organoid systems based on human pluripotent stem cells (hPSCs) have shown a promising potential to model neurodegenerative diseases, including AD. These systems, in combination with engineering tools, allow in vitro generation of brain-like tissues that recapitulate complex cell-cell and cell-extracellular matrix (ECM) interactions. Brain ECMs play important roles in neural differentiation, proliferation, neuronal network, and AD progression. In this contribution related to brain ECMs, recent advances in modeling AD pathology and progression based on hPSC-derived neural cells, tissues, and brain organoids were reviewed and summarized. In addition, the roles of ECMs in neural differentiation of hPSCs and the influences of heparan sulfate proteoglycans, chondroitin sulfate proteoglycans, and hyaluronic acid on the progression of neurodegeneration were discussed. The advantages that use stem cell-based organoids to study neural degeneration and to investigate the effects of ECM development on the disease progression were highlighted. The contents of this article are significant for understanding cell-matrix interactions in stem cell microenvironment for treating neural degeneration. 
    more » « less
  3. Studies in animal models tracing organogenesis of the mesoderm-derived heart have emphasized the importance of signals coming from adjacent endodermal tissues in coordinating proper cardiac morphogenesis. Although in vitro models such as cardiac organoids have shown great potential to recapitulate the physiology of the human heart, they are unable to capture the complex crosstalk that takes place between the co-developing heart and endodermal organs, partly due to their distinct germ layer origins. In an effort to address this long-sought challenge, recent reports of multilineage organoids comprising both cardiac and endodermal derivatives have energized the efforts to understand how inter-organ, cross-lineage communications influence their respective morphogenesis. These co-differentiation systems have produced intriguing findings of shared signaling requirements for inducing cardiac specification together with primitive foregut, pulmonary, or intestinal lineages. Overall, these multilineage cardiac organoids offer an unprecedented window into human development that can reveal how the endoderm and heart cooperate to direct morphogenesis, patterning, and maturation. Further, through spatiotemporal reorganization, the co-emerged multilineage cells self-assemble into distinct compartments as seen in the cardiac-foregut, cardiac-intestine, and cardiopulmonary organoids and undergo cell migration and tissue reorganization to establish tissue boundaries. Looking into the future, these cardiac incorporated, multilineage organoids will inspire future strategies for improved cell sourcing for regenerative interventions and provide more effective models for disease investigation and drug testing. In this review, we will introduce the developmental context of coordinated heart and endoderm morphogenesis, discuss strategies for in vitro co-induction of cardiac and endodermal derivatives, and finally comment on the challenges and exciting new research directions enabled by this breakthrough. 
    more » « less