skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS)
The application of direct analysis in real-time mass spectrometry (DART-MS), which is finding increasing use in atmospheric chemistry, to two different laboratory model systems for airborne particles is investigated: (1) submicron C3–C7 dicarboxylic acid (diacid) particles reacted with gas-phase trimethylamine (TMA) or butylamine (BA) and (2) secondary organic aerosol (SOA) particles from the ozonolysis of α-cedrene. The diacid particles exhibit a clear odd–even pattern in their chemical reactivity toward TMA and BA, with the odd-carbon diacid particles being substantially more reactive than even ones. The ratio of base to diacid in reacted particles, determined using known diacid–base mixtures, was compared to that measured by high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), which vaporizes the whole particle. Results show that DART-MS probes  ∼  30 nm of the surface layer, consistent with other studies on different systems. For α-cedrene SOA particles, it is shown that varying the temperature of the particle stream as it enters the DART-MS ionization region can distinguish between specific components with the same molecular mass but different vapor pressures. These results demonstrate the utility of DART-MS for (1) examining reactivity of heterogeneous model systems for atmospheric particles and (2) probing components of SOA particles based on volatility.  more » « less
Award ID(s):
1207112 1443140 1404233 1337080 0923323
PAR ID:
10043185
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
10
Issue:
4
ISSN:
1867-8548
Page Range / eLocation ID:
1373 to 1386
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor–particle dynamics model to interpret the roles of gas–particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations. 
    more » « less
  2. Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield  =  4(+1/−3) %, total ON yield  =  14(+3/−2) %, and SOA yield  ≤  10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography–mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest. 
    more » « less
  3. The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles. 
    more » « less
  4. The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the particle-wall loss rate. In volatile and intermediate-volatility organic compound (VOC and IVOC) systems in which SOA formation is governed by kinetically limited growth, the effect of vapor-wall deposition on SOA mass yields can be constrained by using high surface area concentrations of seed aerosol to promote the condensation of SOA-forming vapors onto seed aerosol instead of the chamber walls. However, under such high seed aerosol levels, the presence of significant coagulation may complicate the particle-wall deposition correction. Here, we present a model framework that accounts for coagulation in chamber studies in which high seed aerosol surface area concentrations are used. For the α-pinene ozonolysis system, we find that after accounting for coagulation, SOA mass yields remain approximately constant when high seed aerosol surface area concentrations ( ≥  8000 µm2 cm−3) are used, consistent with our prior study (Nah et al., 2016) showing that α-pinene ozonolysis SOA formation is governed by quasi-equilibrium growth. In addition, we systematically assess the uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments. At low seed aerosol surface area concentrations (< 3000 µm2 cm−3), the SOA mass yields at peak SOA growth obtained from the particle-wall loss correction methods agree within 14 %. However, at high seed aerosol surface area concentrations ( ≥  8000 µm2 cm−3), the SOA mass yields at peak SOA growth obtained from different particle-wall loss correction methods can differ by as much as 58 %. These differences arise from assumptions made in the particle-wall loss correction regarding the first-order particle-wall loss rate. This study highlights the importance of accounting for particle-wall deposition accurately during SOA formation chamber experiments and assessing the uncertainties associated with the application of the particle-wall deposition correction method when comparing and using SOA mass yields measured in different studies. 
    more » « less
  5. Abstract We recently demonstrated that the heterogeneous hydroxyl radical (·OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with ·OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous ·OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous ·OH oxidation of IEPOX-SOA particles. Gas-phase IEPOX was reacted with inorganic sulfate particles of varying pH (0.5 to 2.0) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were then aged at a relative humidity of 60% in an oxidation flow reactor (OFR) for 0-15 days of equivalent atmospheric ·OH exposure. Aged IEPOX-SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) to measure real-time aerosol mass and chemical changes of the SOA particles, and were also collected onto Teflon filters and into PILS vials for molecular-level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), ion chromatography, and total OS mass amounts. 
    more » « less