Pretreatment is an important step to reduce the recalcitrance factors in biomass for effective biomass utilization. In particular, the choice of processing solvents in the pretreatment influences the quantity and quality of the final products. Although conventional organosolv pretreatments are effective, they are typically performed under harsh conditions. Compared to those approaches, recent studies have shown that the use of Deep Eutectic Solvents (DES) made up of a hydrogen bond donor and acceptor at the eutectic point can be a promising alternative as biomass processing solvents because of their good thermal stability and compatibility with natural components. In this study, DES pretreatment was applied to corn stover, which is the largest agricultural residue in the United States. The performance of the pretreatments was assessed by measuring the removal of xylan and lignin from the corn stover, as well as the production of glucose and xylose by subsequent enzymatic hydrolysis. The results indicated that the DES pretreatment resulted in significantly higher delignification rates (75%) than an organosolv pretreatment (35%) at the same processing temperature. The DES pretreatment also resulted in a more effective conversion of glucan (81%) and xylan (56%) than the organosolv pretreatment. The results indicated that DES pretreatment is a promising processing strategy for biomass utilization.
more »
« less
Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling
A woody dicot (hybrid poplar), an herbaceous dicot (goldenrod), and a graminaceous monocot (corn stover) were subjected to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic hydrolysis in order to assess how taxonomically and structurally diverse biomass feedstocks respond to a mild alkaline oxidative pretreatment and how differing features of the cell wall matrix contribute to its recalcitrance. Using glycome profiling, we determined changes in the extractability of non-cellulosic glucans following pretreatment by screening extracts of the pretreated walls with a panel of 155 cell wall glycan-directed monoclonal antibodies to determine differences in the abundance and distribution of non-cellulosic glycan epitopes in these extracts and assess pretreatment-induced changes in the structural integrity of the cell wall. Two taxonomically-dependent outcomes of pretreatment were identified that both improved the subsequent enzymatic hydrolysis yields but differed in their impacts on cell wall structural integrity. Specifically, it was revealed that goldenrod walls exhibited decreases in all classes of alkali-extractable glycans indicating their solubilization during pretreatment, which was accompanied by an improvement in the subsequent extractability of the remaining cell wall glycans. The corn stover walls did not show the same decreases in glycan abundance in extracts following pretreatment, but rather mild increases in all classes of cell wall glycans, indicating overall weaker associations between cell wall polymers and improved extractability. The hybrid poplar walls were relatively unaffected by pretreatment in terms of composition, enzymatic hydrolysis, and the extractability of cell wall glycans due presumably to their higher lignin content and denser vascular structure.
more »
« less
- Award ID(s):
- 1336622
- PAR ID:
- 10043848
- Date Published:
- Journal Name:
- RSC Adv.
- Volume:
- 4
- Issue:
- 33
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 17282 to 17292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings, incurring large processing costs for the production of industrial-scale biofuels or biochemicals. Manipulating surface charge interactions to minimize nonproductive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability but with limited demonstrated success to date. Here, we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe, Thermobifida fusca. A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of −52 to 37 was computationally designed using Rosetta macromolecular modeling software. Activity for all mutants was rapidly characterized as soluble cell lysates, and promising mutants (containing mutations on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2- and 5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using a protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM-containing endocellulases exhibited a 5–10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity toward complex lignocellulosic biomass-derived substrates.more » « less
-
Bisected N -glycans represent a unique class of protein N -glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N -glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting “cores”. Subsequent enzymatic modular extension of the “cores” yielded a comprehensive library of biantennary N -glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N -glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc. ) N -glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N -glycan recognition by GBPs, and in turn improve their applications.more » « less
-
The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugarAbstract Peptidoglycan—a mesh sac of glycans that are linked by peptides—is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N- acetylglucosamine (Glc N Ac) β-(1–4)-linked to N -acetylmuramic acid (Mur N Ac). Borrelia burgdorferi , the tick-borne Lyme disease pathogen, produces glycan chains in which Mur N Ac is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography–mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain Glc N Ac–Glc N Ac. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.more » « less
-
Non-productive binding of cellulolytic enzymes to various plant cell wall components, such as lignin and cellulose, necessitates high enzyme loadings to achieve efficient conversion of pretreated lignocellulosic biomass to fermentable sugars. Protein supercharging was previously employed as one of the strategies to reduce non-productive binding to biomass. However, various questions remain unanswered regarding the hydrolysis kinetics of supercharged enzymes towards pretreated biomass substrates and the role played by enzyme interactions with individual cell wall polymers such as cellulose and xylan. In this study, CBM2a (fromThermobifida fusca) fused with endocellulase Cel5A (fromT. fusca) was used as the model wild-type enzyme and CBM2a was supercharged using Rosetta, to obtain eight variants with net charges spanning −14 to +6. These enzymes were recombinantly expressed inE. coli, purified from cell lysates, and their hydrolytic activities were tested against pretreated biomass substrates (AFEX and EA treated corn stover). Although the wild-type enzyme showed greater activity compared to both negatively and positively supercharged enzymes towards pretreated biomass, thermal denaturation assays identified two negatively supercharged constructs that perform better than the wild-type enzyme (∼3 to 4-fold difference in activity) upon thermal deactivation at higher temperatures. To better understand the causal factor of reduced supercharged enzyme activity towards AFEX corn stover, we performed hydrolysis assays on cellulose-I/xylan/pNPC, lignin inhibition assays, and thermal stability assays. Altogether, these assays showed that the negatively supercharged mutants were highly impacted by reduced activity towards xylan whereas the positively supercharged mutants showed dramatically reduced activity towards cellulose and xylan. It was identified that a combination of impaired cellulose binding and lower thermal stability was the cause of reduced hydrolytic activity of positively supercharged enzyme sub-group. Overall, this study demonstrated a systematic approach to investigate the behavior of supercharged enzymes and identified supercharged enzyme constructs that show superior activity at elevated temperatures. Future work will address the impact of parameters such as pH, salt concentration, and assay temperature on the hydrolytic activity and thermal stability of supercharged enzymes.more » « less
An official website of the United States government

