skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Cove‐Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells
Abstract

Two cove‐edge graphene nanoribbons hPDI2‐Pyr‐hPDI2 (1) and hPDI3‐Pyr‐hPDI3 (2) are used as efficient electron‐transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power‐conversion efficiencies (PCEs) of 15.6 % and 16.5 % for1and2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that1and2act as efficient electron‐extraction materials. Additionally, compared with PC61BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.

 
more » « less
NSF-PAR ID:
10044641
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
56
Issue:
46
ISSN:
1433-7851
Page Range / eLocation ID:
p. 14648-14652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two cove‐edge graphene nanoribbons hPDI2‐Pyr‐hPDI2 (1) and hPDI3‐Pyr‐hPDI3 (2) are used as efficient electron‐transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power‐conversion efficiencies (PCEs) of 15.6 % and 16.5 % for1and2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that1and2act as efficient electron‐extraction materials. Additionally, compared with PC61BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.

     
    more » « less
  2.  
    more » « less
  3. We present a series of new dopants based on a bicyclcic guanidine-type structure, 1,5,7-triazabicyclo[4.4.0]dec-5-ene ( TBD ), for organic semiconductors. A series of TBD derivatives that were alkylated at the 7-position were synthesized and their physical properties were determined. These stable dopants were shown to be effective n-type dopants for [6,6]-phenyl- C 61 -butyric acid methyl ester (PC 61 BM), poly{[ N , N ′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt -5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d :2′,3′- d ′]- s -indaceno[1,2- b :5,6- b ′]dithiophene (ITIC). Films of PC 61 BM doped with 10 mol% of a dimeric derivative of TBD had electrical conductivities of 0.065 S cm −1 . The utility of the dopants was further shown by doping electron transport layers of PC 61 BM with 2TBD-C10 for methyl ammonium lead iodide (MAPbI 3 ) solar cells leading to improved fill factors and PCEs relative to undoped ETLs. 
    more » « less
  4. Abstract

    Two bipolar host materials3‐CBPyand4‐mCBPyare reported. These hosts are structural analogs of the common host materials CBP and mCBP wherein the phenyl rings have been replaced with pyridines. The two materials possess deep highest occupied molecular orbital (HOMO) and shallow lowest unoccupied molecular orbital (LUMO) levels along with sufficiently high energyS1andT1states that make them suitable hosts for yellow emitters in electroluminescent devices. Yellow‐emitting thermally activated delayed fluorescence organic light‐emitting diodes are fabricated using 2,4,6‐tris (4‐(10H‐phenoxazin‐10‐yl)phenyl)‐1,3,5‐triazine (tri‐PXZ‐TRZ) as the dopant emitter with either3‐CBPyor4‐mCBPyemployed as the host. Their device performance is compared to analogous devices using CBP and mCBP as host materials. The pyridine‐containing host devices show markedly improved external quantum efficiencies (EQE) and decreased roll‐off. The 7 wt% tri‐PXZ‐TRZ‐doped device exhibits very low turn‐on voltage (2.5 V for both3‐CBPyand4‐mCBPy) along with maximum external quantum efficiencies (EQEmax) reaching 15.6% (for3‐CBPy) and 19.4% (for4‐mCBPy). The device using4‐mCBPyalso exhibits very low efficiency roll‐off with an EQE of 16.0% at a luminance of 10 000 cd m−2.

     
    more » « less
  5. 1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles,1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles,12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4to1gH,1hH, and1iH, and with Na:Hg to1g2and1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts.E(1+/1) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducingE(1+/1) values, as well as cathodic shifts inE(12•+/12) andE(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the1Hspecies with PC61BM. Because 2-aryl groups stabilize radicals,1b2and1g2exhibit weaker bonds than1e2and1h2and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a “cleavage-first” pathway, while1e2and1h2react only via “electron-transfer-first”.1h2exhibits the most cathodicE(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers withVIIvia “electron-transfer-first”. Crystal structures show rather long central C–C bonds for1b2(1.5899(11) and 1.6194(8) Å) and1h2(1.6299(13) Å).

     
    more » « less