skip to main content

Title: Spatial Patterns of Groundwater Biogeochemical Reactivity in an Intertidal Beach Aquifer: Beach Aquifer Biogeochemical Reactivity
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Page Range / eLocation ID:
2548 to 2562
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The intertidal zone of beach aquifers hosts biogeochemical transformations of terrestrially derived nutrients that are mediated by reactive organic carbon from seawater infiltration. While dissolved organic carbon is often assumed the sole reactive organic carbon component, advected and entrapped particulate organic carbon (POC) is also capable of supporting chemical reactions. Retarded advection of POC relative to groundwater flow forms pools of reactive carbon within beach sediments that support biogeochemical reactions as dissolved solutes move across them due to transient groundwater flow. In this work, we simulate the contribution of POC to beach reactions and identify parameters that control its relative contribution using a groundwater flow model (SEAWAT) and reactive transport model (PHT3D). Results show transient contributions of POC to denitrification, as the spatial extent of the saline circulation cell varies over time due to changing hydrologic factors. A decrease in POC retardation and an increase in tidal amplitude during POC deposition resulted in POC expansion, which increased the relative contributions of POC to beach reactivity. Decreased hydraulic conductivity and increased tidal amplitude post‐deposition decreased the utilization of POC for denitrification by allowing the oxic, saline water to completely encompass the pool of POC. Results highlight that POC is an intermittently utilized source of carbon that displays complex spatial relationships with groundwater flow conditions and overall beach biogeochemistry. This work demonstrates that POC may be a periodically important but overlooked contributor to biogeochemical reactions in carbon‐poor beach aquifers.

    more » « less
  2. null (Ed.)
    Beach aquifers, located in the subsurface of sandy beaches, are unique ecosystems with steep chemical and physical gradients resulting from the mixing of terrestrial fresh groundwater and saline groundwater from the sea. While work has rapidly progressed to understand the physics and chemistry in this environment, much less is known about the microorganisms present despite the fact that they are responsible for vital biogeochemical processes. This paper presents a review of the current state of knowledge of microbes within beach aquifers and the mechanisms that control the beach aquifer microbiome. We review literature describing the distribution and diversity of microorganisms in the freshwater-saltwater mixing zone of beach aquifers, and identify just 12 papers. We highlight knowledge gaps, as well as future research directions: The understanding of beach aquifer microorganisms is informed primarily by 16S ribosomal RNA gene sequences. Metagenomics and metatranscriptomics have not yet been applied but are promising approaches for elucidating key metabolic and ecological roles of microbes in this environment. Additionally, variability in field sampling and analytical methods restrict comparison of data across studies and geographic locations. Further, documented evidence on the migration of microbes within the beach aquifer is limited. Taking into account the physical transport of microbes through sand by flowing groundwater may be critical for understanding the structure and dynamics of microbial communities. Quantitative measurements of rates of elemental cycling in the context of microbial diversity need further investigation, in order to understand the roles of microbes in mediating biogeochemical fluxes from the beach aquifer to the coastal ocean. Lastly, understanding the current state of beach aquifers in regulating carbon stocks is critical to foster a better understanding of the contribution of the beach aquifer microbiome to global climate models. 
    more » « less
  3. Abstract

    Biogeochemical reactions within intertidal zones of coastal aquifers have been shown to alter the concentrations of terrestrial solutes prior to their discharge to surface waters. In organic‐poor sandy aquifers, the input of marine organic matter from infiltrating seawater supports active biogeochemical reactions within the sediments. However, while the seasonality of surface water organic carbon concentrations (primary production) and groundwater mixing have been documented, there is limited understanding of the transience of various organic carbon pools (pore water particulate, dissolved, sedimentary) within the aquifer and how these relate to the location and magnitudes of biogeochemical reactions over time. To understand the relationship between changes in groundwater flow and the seasonal migration of geochemical patterns, beach pore water and sediment samples were collected and analyzed from six field sampling events spanning 2 years. While the seasonally dynamic patterns of aerobic respiration closely followed those of salinity, redox conditions and nutrient characteristics (distributions of N and P, denitrification rates) were unrelated to contemporaneous salinity patterns. This divergence was attributed to the spatial variations of reactive particulate organic carbon distributions, unrelated to salinity patterns, likely due to filtration, retardation, and immobilization dynamics during transport within the sediments. Results support a “carbon memory” effect within the beach, with the evolution and migration of reaction patterns relating to the distribution of these scattered carbon pools as more mobile solutes move over less mobile pools during changes in hydrologic conditions. This holds important implications for the prediction and quantification of biogeochemical reactions within beach systems.

    more » « less