skip to main content

Title: Triplet Transfer Mediates Triplet Pair Separation during Singlet Fission in 6,13‐Bis(triisopropylsilylethynyl)‐Pentacene

Triplet population dynamics of solution cast films of isolated polymorphs of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pn) provide quantitative experimental evidence that triplet excitation energy transfer is the dominant mechanism for correlated triplet pair (CTP) separation during singlet fission. Variations in CTP separation rates are compared for polymorphs of TIPS‐Pn with their triplet diffusion characteristics that are controlled by their crystal structures. Since triplet energy transfer is a spin‐forbidden process requiring direct wavefunction overlap, simple calculations of electron and hole transfer integrals are used to predict how molecular packing arrangements would influence triplet transfer rates. The transfer integrals reveal how differences in the packing arrangements affect electronic interactions between pairs of TIPS‐Pn molecules, which are correlated with the relative rates of CTP separation in the polymorphs. These findings suggest that relatively simple computations in conjunction with measurements of molecular packing structures may be used as screening tools to predict a priori whether new types of singlet fission sensitizers have the potential to undergo fast separation of CTP states to form multiplied triplets.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Singlet fission, a process by which one singlet exciton is converted into two lower energy triplet excitons, is sensitive to the degree of electronic coupling within a molecular packing structure. Variations in molecular packing can be detrimental to triplet formation and triplet–triplet separation, ultimately affecting the harvesting of triplets for electricity in organic photovoltaic devices. Here, six phase‐pure molecular packing structures of 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) with varying optoelectronic properties are isolated using 2D lead halide perovskites as tunable, crystalline surfaces for crystallization. Transient absorption spectroscopy reveals that while triplet formation is fast (<100 fs) regardless of template structure, the increased ordering in perovskite‐templated samples speeds up triplet–triplet separation and recombination, providing evidence that the benefits of phase‐purity offset minor variations in molecular packing. Molecular dynamics modeling of the interface reveals that perovskite‐templating allows for closer packing of TIPS‐pentacene molecules for all perovskite templates. With an extensive number of organic molecule‐perovskite pairings, this work provides a methodology to use ordered, periodic surfaces to elucidate structure–property relationships of small organic molecules in order to adjust structural or optoelectronic responses, such as molecular packing and singlet fission.

    more » « less
  2. The electronic and optical responses of an organic semiconductor (OSC) are dictated by the chemistries of the molecular or polymer building blocks and how these chromophores pack in the solid state. Understanding the physicochemical nature of these responses is not only critical for determining the OSC performance for a particular application, but the UV/visible optical response may also be of potential use to determine aspects of the molecular-scale solid-state packing for crystal polymorphs or thin-film morphologies that are difficult to determine otherwise. To probe these relationships, we report the quantum-chemical investigation of a series of trialkyltetrelethynyl acenes (tetrel = silicon or germanium) that adopt the brickwork, slip-stack, or herringbone (HB) packing configurations; the π-conjugated backbones considered here are pentacene and anthradithiophene. For comparison, HB-packed (unsubstituted) pentacene is also included. Density functional theory and G 0 W 0 (single-shot Green’s function G and/or screened Coulomb function W) electronic band structures, G 0 W 0 -Bethe–Salpeter equation-derived optical spectra, polarized ϵ 2 spectra, and distributions of both singlet and triplet exciton wave functions are reported. Configurational disorder is also considered. Furthermore, we evaluate the probability of singlet fission in these materials through energy conservation relationships. 
    more » « less
  3. Gavin Armstrong (Ed.)
    Quantum interference (QI)—the constructive or destructive interference of conduction pathways through molecular orbitals—plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation. 
    more » « less
  4. null (Ed.)
    Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley–Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 μs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstrate this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion. 
    more » « less
  5. Abstract

    Enumerating the potential stacking sequences of layers is a fundamental way to account for the structure diversity of solid state compounds. In many cases, these stacking variations represent polymorphs with only small energetic differences. Here, we examine a compound for which the preferred stacking pattern instead reveals key aspects about its chemical bonding: Pd5InAs. Its structure is based on the intergrowth of slabs of the AuCu3and PtHg2(or alternatively, fluorite) structure types. Two basic stacking arrangements are available to this compound, represented by the Pd5TlAs and HoCoGa5structure types. DFT total energy calculations reveal that the former outcompetes the latter by a staggering 0.65 eV/formula unit. Through a combination of DFT‐reversed approximation Molecular Orbital (DFT‐raMO) and DFT‐Chemical Pressure (DFT‐CP) analysis we trace this preference to two factors. First, with DFT‐raMO analysis, we derive a Zintl‐like bonding scheme of Pd5InAs. This scheme, along with the inspection of selected crystal orbitals, is then connected to preferred stacking through the coordination environments of the Pd atoms at the interface between the Pd−In and Pd−As layers. In the hypothetical HoCoGa5‐type and observed Pd5InAs‐type structures, different Pd coordination environments arise at the interfaces. The hypothetical structure features square planar PdIn2As2units, in each of which the same 4d‐orbital serves in the Pd sublattice's role as both Lewis acid (for interactions with the As) and Lewis base (for interactions with the In). In the observed structure, tetrahedral PdIn2As2units occur instead, so that these contradictory roles are distributed to separate 4d‐orbitals, leading to more effective bonding. DFT‐CP analysis illustrates that this driving force for the Pd5TlAs‐type arrangement is supplemented by a favorable alignment of the packing tensions in the parent structures. Altogether, the resulting picture demonstrates how the reaction of simple intermetallic structures to form intergrowths can be guided by recognizable chemical interactions.

    more » « less