skip to main content


Title: Reply to comment by Remya et al. on “Effects of electron temperature anisotropy on proton mirror instability evolution”: MIRROR INSTABILITY
NSF-PAR ID:
10045487
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
122
Issue:
1
ISSN:
2169-9380
Page Range / eLocation ID:
748 to 752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the time-dependent formation and evolution of a current sheet (CS) in a magnetised, collisionless, high-beta plasma using hybrid-kinetic particle-in-cell simulations. An initially tearing-stable Harris sheet is frozen into a persistently driven incompressible flow so that its characteristic thickness gradually decreases in time. As the CS thins, the strength of the reconnecting field increases, and adiabatic invariance in the inflowing fluid elements produces a field-biased pressure anisotropy with excess perpendicular pressure. At large plasma beta, this anisotropy excites the mirror instability, which deforms the reconnecting field on ion-Larmor scales and dramatically reduces the effective thickness of the CS. Tearing modes whose wavelengths are comparable to that of the mirrors then become unstable, triggering reconnection on smaller scales and at earlier times than would have occurred if the thinning CS were to have retained its Harris profile. A novel method for identifying and tracking X-points is introduced, yielding X-point separations that are initially intermediate between the perpendicular and parallel mirror wavelengths in the upstream plasma. These mirror-stimulated tearing modes ultimately grow and merge to produce island widths comparable to the CS thickness, an outcome we verify across a range of CS formation timescales and initial CS widths. Our results may find their most immediate application in the tearing disruption of magnetic folds generated by turbulent dynamo in weakly collisional, high-beta, astrophysical plasmas. 
    more » « less
  2. null (Ed.)
    We present a direct (primal only) derivation of Mirror Descent as a “partial” discretization of gradient flow on a Riemannian manifold where the metric tensor is the Hessian of the Mirror Descent potential function. We contrast this discretization to Natural Gradient Descent, which is obtained by a “full” forward Euler discretization. This view helps shed light on the relationship between the methods and allows generalizing Mirror Descent to any Riemannian geometry in Rd, even when the metric tensor is not a Hessian, and thus there is no “dual.” 
    more » « less
  3. null (Ed.)