Abstract Although most class (b) transition metals have been studied in regard to CH4activation, divalent silver (AgII), possibly owing to its reactive nature, is the only class (b) high‐valent transition metal center that is not yet reported to exhibit reactivities towards CH4activation. We now report that electrochemically generated AgIImetalloradical readily functionalizes CH4into methyl bisulfate (CH3OSO3H) at ambient conditions in 98 % H2SO4. Mechanistic investigation experimentally unveils a low activation energy of 13.1 kcal mol−1, a high pseudo‐first‐order rate constant of CH4activation up to 2.8×103 h−1at room temperature and a CH4pressure of 85 psi, and two competing reaction pathways preferable towards CH4activation over solvent oxidation. Reaction kinetic data suggest a Faradaic efficiency exceeding 99 % beyond 180 psi CH4at room temperature for potential chemical production from widely distributed natural gas resources with minimal infrastructure reliance.
more »
« less
Ag II -Mediated Synthesis of β-Fluoroketones by Oxidative Cyclopropanol Opening: Ag II -Mediated Synthesis of β-Fluoroketones by Oxidative Cyclopropanol Opening
- Award ID(s):
- 1654490
- PAR ID:
- 10045763
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- European Journal of Organic Chemistry
- Volume:
- 2017
- Issue:
- 39
- ISSN:
- 1434-193X
- Page Range / eLocation ID:
- 5872 to 5879
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Organohypervalent iodine reagents are widely used for the preparation of various oxazolines, oxazoles, isoxazolines, and isoxazoles. In the formation of these heterocyclic compounds, hypervalent iodine species can serve as the activating reagents for various substrates, as well as the heteroatom donor reagents. In recent research, both chemical and electrochemical approaches toward generation of hypervalent iodine species have been utilized. The in situ generated active species can react with appropriate substrates to give the corresponding heterocyclic products. In this short review, we summarize the hypervalent-iodine-mediated preparation of oxazolines, oxazoles, isoxazolines, and isoxazoles starting from various substrates. 1 Introduction 2 Synthesis of Oxazolines 3 Synthesis of Oxazoles 4 Synthesis of Isoxazolines 5 Synthesis of Isoxazoles 6 Conclusionmore » « less
-
Abstract We report that O‐selective arylation of 2‐ and 4‐pyridones with arylboronic acids is affected by a modular, bismacycle‐based system. The utility of this umpolung approach to pyridyl ethers, which is complementary to conventional methods based on SNAr or cross‐coupling, is demonstrated through the concise synthesis of Ki6783 and picolinafen, and the formal synthesis of cabozantib and golvatinib. Computational investigations reveal that arylation proceeds in a concerted fashion via a 5‐membered transition state. The kinetically‐controlled regioselectivity for O‐arylation—which is reversed relative to previous BiV‐mediated pyridone arylations—is attributed primarily to the geometric constraints imposed by the bismacyclic scaffold.more » « less
An official website of the United States government
