skip to main content


Title: Signatures of positive selection and local adaptation to urbanization in white‐footed mice ( Peromyscus leucopus )
Abstract

Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white‐footed mice (Peromyscus leucopus) in New York City. We analysed 154,770SNPs identified from transcriptome data from 48P. leucopusindividuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutralSNPdata set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well‐established roles in metabolizing lipids and carbohydrates. Our results indicate that white‐footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas.

 
more » « less
NSF-PAR ID:
10045856
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
26
Issue:
22
ISSN:
0962-1083
Page Range / eLocation ID:
p. 6336-6350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria,Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i ‘amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations whereP. relictumexists, and can sustain infection without major fitness consequences. High‐elevation, unexposed populations of ‘amakihi display little to no tolerance. To explore the genomic basis of adaptation toP. relictumin low‐elevation ‘amakihi, we genotyped 125 ‘amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containingSNPs and used the reference ‘amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low‐ and high‐elevation population pairs and identified loci with signatures of selection within low‐elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta‐defensin, glycoproteins and interleukin‐related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.

     
    more » « less
  2. Abstract

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identifySNPmarkers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein‐coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis ariesv. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR‐basedSNPchip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositanandbayescan), we detected 28SNPloci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease‐regulating functions (e.g. Ovar‐DRA,APC,BATF2,MAGEB18), cell regulation signalling pathways (e.g.KRIT1,PI3K,ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene‐targetedSNPdiscovery and subsequentSNPchip genotyping using low‐quality samples in a nonmodel species.

     
    more » « less
  3. Abstract

    Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (Rattus norvegicus) across Manhattan, New York City (NYC), using 262 samples and 61,401SNPs to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin ofNYCrats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3,p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE,sPCA,EEMS) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine‐scale genetic structuring (FST = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.

     
    more » « less
  4. Abstract

    Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000SNPs across the genome in native pre‐epizootic westernUSbirds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.

     
    more » « less
  5. Abstract

    Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (Ostrea lurida), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation‐by‐distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses inO. lurida, 13,424 single nucleotide polymorphisms (SNPs) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235SNPs across 129GBSloci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine‐scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open‐sourced research on the population structure ofO. lurida.

     
    more » « less