skip to main content

Title: Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;   « less
Publication Date:
NSF-PAR ID:
10045907
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
9
Issue:
6
Page Range or eLocation-ID:
2385 to 2412
ISSN:
1942-2466
Publisher:
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddymore »Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects.« less
  2. Abstract. Satellite cloud observations have become an indispensable tool for evaluatinggeneral circulation models (GCMs). To facilitate the satellite and GCMcomparisons, the CFMIP (Cloud Feedback Model Inter-comparison Project)Observation Simulator Package (COSP) has been developed and is nowincreasingly used in GCM evaluations. Real-world clouds and precipitation canhave significant sub-grid variations, which, however, are often ignored oroversimplified in the COSP simulation. In this study, we use COSP cloudsimulations from the Super-Parameterized Community Atmosphere Model (SPCAM5)and satellite observations from the Moderate Resolution ImagingSpectroradiometer (MODIS) and CloudSat to demonstrate the importance ofconsidering the sub-grid variability of cloud and precipitation when usingthe COSP to evaluate GCMmore »simulations. We carry out two sensitivity tests:SPCAM5 COSP and SPCAM5-Homogeneous COSP. In the SPCAM5 COSP run, the sub-gridcloud and precipitation properties from the embeddedcloud-resolving model (CRM) of SPCAM5 are used to drive the COSP simulation, while inthe SPCAM5-Homogeneous COSP run only grid-mean cloud and precipitationproperties (i.e., no sub-grid variations) are given to the COSP. We find thatthe warm rain signatures in the SPCAM5 COSP run agree with the MODIS andCloudSat observations quite well. In contrast, the SPCAM5-Homogeneous COSPrun which ignores the sub-grid cloud variations substantially overestimatesthe radar reflectivity and probability of precipitation compared to thesatellite observations, as well as the results from the SPCAM5 COSP run. Thesignificant differences between the two COSP runs demonstrate that it isimportant to take into account the sub-grid variations of cloud andprecipitation when using COSP to evaluate the GCM to avoid confusing andmisleading results.

    « less
  3. Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. Anmore »intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.« less