skip to main content


Title: The Evolution of Sulfide in Shallow Aquatic Ecosystem Sediments: An Analysis of the Roles of Sulfate, Organic Carbon, and Iron and Feedback Constraints Using Structural Equation Modeling: SO 4 , Sediment TOC, and Iron Control Sulfide
NSF-PAR ID:
10046276
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
122
Issue:
11
ISSN:
2169-8953
Page Range / eLocation ID:
2719 to 2735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ternary metal‐chalcogenide semiconductor nanocrystals are an attractive class of materials due to their tunable optoelectronic properties that result from a wide range of compositional flexibility and structural diversity. Here, the phase‐controlled synthesis of colloidal silver iron sulfide (AgFeS2) nanocrystals is reported and their resonant light–matter interactions are investigated. The product composition can be shifted selectively from tetragonal to orthorhombic by simply adjusting the coordinating ligand concentration, while keeping the other reaction parameters unchanged. The results show that excess ligands impact precursor reactivity, and consequently the nanocrystal growth rate, thus deterministically dictating the resulting crystal structure. Moreover, it is demonstrated that the strong ultraviolet‐visible extinction peak exhibited by AgFeS2nanocrystals is a consequence of a quasi‐static dielectric resonance (DR), analogous to the optical response observed in CuFeS2nanocrystals. Spectroscopic studies and computational calculations confirm that a negative permittivity at ultraviolet/visible frequencies arises due to the electronic structure of these intermediate‐band (IB) semiconductor nanocrystals, resulting in a DR consisting of resonant valence‐band‐to‐intermediate‐band excitations, as opposed to the well‐known localized surface plasmon resonance response typically observed in metallic nanostructures. Overall, these results expand the current library of an underexplored class of IB semiconductors with unique optical properties, and also enrich the understanding of DRs in ternary metal‐iron‐sulfide nanomaterials.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Molybdenum (Mo) in marine sediments has been used as a paleoproxy to provide evidence for past oceanic euxinic and sulfidic conditions through its association with pyrite. Here, we examine the adsorption of Mo to the pyrite precursors mackinawite and greigite and assess the robustness of this association during iron sulfide phase transformations. Tetrathiomolybdate (MoS42–) adsorption experiments were done using mackinawite and greigite that had been characterized using powder X-ray diffraction and Raman spectroscopy. Adsorption of tetrathiomolybdate to mackinawite and to a primarily greigite mixture was similar. Both showed little change to the mineral phase upon adsorption. Relative to previously published data on pyrite, there was a much greater amount of Mo adsorption and a different mode of adsorption. A mackinawite/greigite mixture was also synthesized through an alternative method that more closely mimicked environmental conditions with a brief in situ aging to form an initial phase of iron sulfide, likely highly disordered mackinawite, and the near-immediate addition of MoS42–. X-ray photoelectron spectroscopy results support the adsorption of tetrathiomolybdate and its concomitant reduction to Mo(IV). The Mo-adsorbed mackinawite/greigite mixture was transformed through heating into a greigite/pyrite mixture while monitoring Mo release to the aqueous phase. Here, the sorption of Mo on the solid phase promoted the transformation of mackinawite into pyrite upon heating without diagenetic loss of Mo to the aqueous phase. These results support the early capture of MoS42– to less-stable forms of iron sulfide with negligible diagenetic loss during subsequent transformation. This work continues to point to Mo(VI) as a plausible oxidant of FeS to FeS2 within natural euxinic settings. 
    more » « less
  4. The reactions of the D1-silylidyne radical (SiD; X 2 Π) with deuterium sulfide (D 2 S; X 1 A 1 ) and hydrogen sulfide (H 2 S; X 1 A 1 ) were conducted utilizing a crossed molecular beams machine under single collision conditions. The experimental work was carried out in conjunction with electronic structure calculations. The elementary reaction commences with a barrierless addition of the D1-silylidyne radical to one of the non-bonding electron pairs of the sulfur atom of hydrogen (deuterium) sulfide followed by possible bond rotation isomerization and multiple atomic hydrogen (deuterium) migrations. Unimolecular decomposition of the reaction intermediates lead eventually to the D1-thiosilaformyl radical (DSiS) (p1) and D2-silanethione (D 2 SiS) (p3) via molecular and atomic deuterium loss channels (SiD–D 2 S system) along with the D1-thiosilaformyl radical (DSiS) (p1) and D1-silanethione (HDSiS) (p3) through molecular and atomic hydrogen ejection (SiD–H 2 S system) via indirect scattering dynamics in barrierless and overall exoergic reactions. Our study provides a look into the complex dynamics of the silicon and sulfur chemistries involving multiple deuterium/hydrogen shifts and tight exit transition states, as well as insight into silicon- and sulfur-containing molecule formation pathways in deep space. Although neither of the non-deuterated species – the thiosilaformyl radical (HSiS) and silanethione (H 2 SiS) – have been observed in the interstellar medium (ISM) thus far, astrochemical models presented here predict relative abundances in the Orion Kleinmann-Low nebula to be sufficiently high enough for detection. 
    more » « less