skip to main content


Title: Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms: SO 4 Reduction Mobilizes N, P, C, and Mercury
NSF-PAR ID:
10046277
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
122
Issue:
11
ISSN:
2169-8953
Page Range / eLocation ID:
2769 to 2785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Monomethylmercury (CH 3 Hg) is a neurotoxic pollutant that biomagnifies in aquatic food webs. In sediments, the production of CH 3 Hg depends on the bacterial activity of mercury (Hg) methylating bacteria and the amount of bioavailable inorganic divalent mercury (Hg II ). Biotic and abiotic reduction of Hg II to elemental mercury (Hg 0 ) may limit the pool of Hg II available for methylation in sediments, and thus the amount of CH 3 Hg produced. Knowledge about the transformation of Hg II is therefore primordial to the understanding of the production of toxic and bioaccumulative CH 3 Hg. Here, we examined the reduction of Hg II by sulfidic minerals (FeS (s) and CdS (s) ) in the presence of dissolved iron and dissolved organic matter (DOM) using low, environmentally relevant concentrations of Hg and ratio of Hg II :FeS (s) . Our results show that the reduction of Hg II by Mackinawite (FeS (s) ) was lower (<15% of the Hg II was reduced after 24 h) than when Hg II was reacted with DOM or dissolved iron. We did not observe any formation of Hg 0 when Hg II was reacted with CdS (s) (experiments done under both acidic and basic conditions for up to four days). While reactions in solution were favorable under the experimental conditions, Hg was rapidly removed from solution by co-precipitation. Thermodynamic calculations suggest that in the presence of FeS (s) , reduction of the precipitated Hg II is surface catalyzed and likely involves S −II as the electron donor. The lack of reaction with CdS may be due to its stronger M-S bond relative to FeS, and the lower concentrations of sulfide in solution. We conclude that the reaction of Hg with FeS (s) proceeds via a different mechanism from that of Hg with DOM or dissolved iron, and that it is not a major environmental pathway for the formation of Hg 0 in anoxic environments. 
    more » « less
  2. Abstract

    Solar steam generation, a sustainable water‐purification technology, holds substantial promise in resolving the global issue of shortage of drinkable water. Here, the design, fabrication, and high‐performance of an innovative 3D solar steamer, offering synergistic high‐efficiency steaming and heavy metal removal functions are reported. The device is made of synthesized carbon‐molybdenum‐disulfide microbeads electrostatically assembled on a 3D polyurethane sponge. The mesoporous composite sponge also serves as a freestanding water reservoir that avoids one‐side contact to bulk water, effectively suppressing the commonly observed parasitic heat loss, and offering a high energy efficiency of 88%. When being sculpted into a 3D spoke‐like structure, the composite sponge achieves one of the highest evaporation rates of 1.95 kg m−2h−1at 1 sun. The solar steamer is demonstrated for water treatment, i.e., decontamination of metal ions, disinfection, and reducing alkalinity and hardness of river water. Particularly, the strong mercury adsorption of MoS2reduces mercury levels from 200 to 1 ppb, meeting the stringent standard set by the Environmental Protection Agency, which is the first demonstration of mercury‐removal powered by solar energy. The unique design, fabrication, water‐handling strategy, and mercury‐removal function of this high‐performance solar steamer can inspire new paradigms of water treatment technologies.

     
    more » « less