skip to main content

Title: Rarity and persistence

Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual‐level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long‐distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind‐ or water‐driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.

more » « less
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Ecology Letters
Page Range / eLocation ID:
p. 3-8
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Traits that have arisen multiple times yet still remain rare present a curious paradox. A number of these rare traits show a distinct tippy pattern, where they appear widely dispersed across a phylogeny, are associated with short branches and differ between recently diverged sister species. This phylogenetic pattern has classically been attributed to the trait being an evolutionary dead end, where the trait arises due to some short‐term evolutionary advantage, but it ultimately leads species to extinction. While the higher extinction rate associated with a dead end trait could produce such a tippy pattern, a similar pattern could appear if lineages with the trait speciated slower than other lineages, or if the trait was lost more often that it was gained. In this study, we quantify the degree of tippiness of red flowers in the tomato family, Solanaceae, and investigate the macroevolutionary processes that could explain the sparse phylogenetic distribution of this trait. Using a suite of metrics, we confirm that red‐flowered lineages are significantly overdispersed across the tree and form smaller clades than expected under a null model. Next, we fit 22 alternative models using HiSSE(Hidden State Speciation and Extinction), which accommodates asymmetries in speciation, extinction and transition rates that depend on observed and unobserved (hidden) character states. Results of the model fitting indicated significant variation in diversification rates across the family, which is best explained by the inclusion of hidden states. Our best fitting model differs between the maximum clade credibility tree and when incorporating phylogenetic uncertainty, suggesting that the extreme tippiness and rarity of red Solanaceae flowers makes it difficult to distinguish among different underlying processes. However, both of the best models strongly support a bias towards the loss of red flowers. The best fitting HiSSEmodel when incorporating phylogenetic uncertainty lends some support to the hypothesis that lineages with red flowers exhibit reduced diversification rates due to elevated extinction rates. Future studies employing simulations or targeting population‐level processes may allow us to determine whether red flowers in Solanaceae or other angiosperms clades are rare and tippy due to a combination of processes, or asymmetrical transitions alone.

    more » « less
  2. Abstract

    A key challenge in conservation biology is that not all species are equally likely to go extinct when faced with a disturbance, but there are multiple overlapping reasons for such differences in extinction probability. Differences in species extinction risk may represent extinction selectivity, a non‐random process by which species’ risks of extinction are caused by differences in fitness based on traits. Additionally, rare species with low abundances and/or occupancies are more likely to go extinct than common species for reasons of random chance alone, that is, bad luck. Unless ecologists and conservation biologists can disentangle random and selective extinction processes, then the prediction and prevention of future extinctions will continue to be an elusive challenge.

    We suggest that a modified version of a common null model procedure, rarefaction, can be used to disentangle the influence of stochastic species loss from selective non‐random processes. To this end we applied a rarefaction‐based null model to three published data sets to characterize the influence of species rarity in driving biodiversity loss following three biodiversity loss events: (a) disease‐associated bat declines; (b) disease‐associated amphibian declines; and (c) habitat loss and invasive species‐associated gastropod declines. For each case study, we used rarefaction to generate null expectations of biodiversity loss and species‐specific extinction probabilities.

    In each of our case studies, we find evidence for both random and non‐random (selective) extinctions. Our findings highlight the importance of explicitly considering that some species extinctions are the result of stochastic processes. In other words, we find significant evidence for bad luck in the extinction process.

    Policy implications. Our results suggest that rarefaction can be used to disentangle random and non‐random extinctions and guide management decisions. For example, rarefaction can be used retrospectively to identify when declines of at‐risk species are likely to result from selectivity, versus random chance. Rarefaction can also be used prospectively to formulate minimum predictions of species loss in response to hypothetical disturbances. Given its minimal data requirements and familiarity among ecologists, rarefaction may be an efficient and versatile tool for identifying and protecting species that are most vulnerable to global extinction.

    more » « less
  3. Summary

    Species differ dramatically in their prevalence in the natural world, with many species characterized as rare due to restricted geographic distribution, low local abundance and/or habitat specialization.

    We investigated the ecoevolutionary causes and consequences of rarity with phylogenetically controlled metaanalyses of population genetic diversity, fitness and functional traits in rare and common congeneric plant species. Our syntheses included 252 rare species and 267 common congeners reported in 153 peer‐reviewed articles published from 1978 to 2020 and one manuscript in press.

    Rare species have reduced population genetic diversity, depressed fitness and smaller reproductive structures than common congeners. Rare species also could suffer from inbreeding depression and reduced fertilization efficiency.

    By limiting their capacity to adapt and migrate, these characteristics could influence contemporary patterns of rarity and increase the susceptibility of rare species to rapid environmental change. We recommend that future studies present more nuanced data on the extent of rarity in focal species, expose rare and common species to ecologically relevant treatments, including reciprocal transplants, and conduct quantitative genetic and population genomic analyses across a greater array of systems. This research could elucidate the processes that contribute to rarity and generate robust predictions of extinction risks under global change.

    more » « less
  4. Abstract

    Chronically high levels of inorganic nutrients have been documented in Florida’s coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coralAcropora cervicornisare rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genusAquarickettsiawas identified as a significant indicator of disease susceptibility inA. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances ofAquarickettsia.We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistantA. cervicornismay be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.

    more » « less
  5. Abstract

    The unsustainable harvest of species for the global wildlife trade is a major cause of vertebrate extinction. Through the anthropogenic Allee effect (AAE), overexploitation to extinction can occur when a species' rarity drives up its market price, enabling profitable harvest of all remaining individuals. Even in the absence of rarity value, however, the harvest of other species can subsidize the overexploitation of a rare species to the point of extinction, a phenomenon termed opportunistic exploitation. These two pathways to extinction have been considered independently, but many traded species experience them simultaneously.

    In this study, we develop a simple model that incorporates these mechanisms simultaneously and demonstrate that including multiple harvest strategies with market‐based feedbacks fundamentally alters rare species extinction risk and the rate at which overexploitation occurs. As a pertinent case study, we consider the harvest of ground pangolinsSmutsia temminckii.

    Our results show that pangolin extinction was generally associated with high rarity value, the use of multiple harvest strategies and the simultaneous harvest of a common species that has a fast life history. Pangolin population depletion and short‐term extinction risk were greatest when harvesters used a combination of pursuit and opportunistic (i.e. multi‐species) harvest strategies.

    Policy implications.Our results suggest that feedbacks between multiple financial incentives to overharvest can exacerbate the risk of extinction of rare species. As a result, continuing to address AAE and opportunistic exploitation as separate extinction pathways may insufficiently capture extinction risk for many exploited species. Criteria for assessing extinction risk or harvest sustainability of exploited species should incorporate multiple drivers of harvest pressure, with an expanded focus on including species with high rarity value that are exploited in multi‐species harvest regimes.

    more » « less