skip to main content

Title: A case study of possible future summer convective precipitation over the UK and Europe from a regional climate projection: EUROPEAN CONVECTIVE PRECIPITATION
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10046340
Journal Name:
International Journal of Climatology
Volume:
38
Issue:
5
Page Range or eLocation-ID:
2314 to 2324
ISSN:
0899-8418
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates remain uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is addressed here by analyzing idealized convection-permitting simulations of radiative–convective equilibrium in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation extremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across climates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics and turbulence schemes, implies a thermodynamic contribution that scales with near-surface moisture despite substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals that the small dynamic mode in channel simulations ([Formula: see text]2% K−1) is caused by opposing height dependences of vertical velocity and density, together with the bufferingmore »influence of cloud-base buoyancies that vary little with surface temperature. These results reinforce an emerging picture of the response of extreme tropical precipitation rates to warming: a thermodynamic mode of about 7% K−1dominates, with a minor contribution from changes in dynamics.

    « less
  2. Abstract Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity P max , environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and P max emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS P max increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest P max values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS P max exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture– P max relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other P max -dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher P max , consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests thatmore »anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming.« less