skip to main content

Title: Interdependent Network Recovery Games: Interdependent Network Recovery Games
 ;  ;  ;  
Publication Date:
Journal Name:
Risk Analysis
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an InterDependent Security (IDS) game with networked agents and positive externality where each agent chooses an effort/investment level for securing itself. The agents are interdependent in that the state of security of one agent depends not only on its own investment but also on the other agents' effort/investment. Due to the positive externality, the agents under-invest in security which leads to an inefficient Nash equilibrium (NE). While much has been analyzed in the literature on the under-investment issue, in this study we take a different angle. Specifically, we consider the possibility of allowing agents to pool their resources, i.e., allowing agents to have the ability to both invest in themselves as well as in other agents. We show that the interaction of strategic and selfish agents under resource pooling (RP) improves the agents' effort/investment level as well as their utility as compared to a scenario without resource pooling. We show that the social welfare (total utility) at the NE of the game with resource pooling is higher than the maximum social welfare attainable in a game without resource pooling but by using an optimal incentive mechanism. Furthermore, we show that while voluntary participation in this latter scenario ismore »not generally true, it is guaranteed under resource pooling.« less
  2. A novel multivariate deep causal network model (MDCN) is proposed in this paper, which combines the theory of conditional variance and deep neural networks to identify the cause-effect relationship between different interdependent time-series. The MCDN validation is conducted by a double step approach. The self validation is performed by information theory - based metrics, and the cross validation is achieved by a foresting application that combines the actual interdependent electricity, transportation, and weather datasets in the City of Tallahassee, Florida, USA.