skip to main content


Title: Surface Wave Dynamics in Delaware Bay and Its Adjacent Coastal Shelf: WAVES IN DELAWARE BAY AND ADJACENT SHELF
Award ID(s):
1634578
NSF-PAR ID:
10046571
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
122
Issue:
11
ISSN:
2169-9275
Page Range / eLocation ID:
8683 to 8706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is an archive of model output from the Regional Ocean Modeling System (ROMS) with two grids and two-way nesting. The parent grid resolution (referred to as Doppio) is 7 km and spans the Atlantic Ocean off the northeast United States from Cape Hatteras to Nova Scotia. The refinement grid (referred to as Snaildel) focuses on Delaware Bay and the adjacent coastal ocean at 1 km resolution. This ROMS configuration uses turbulence kinetic energy flux and significant wave height from Simulating Waves Nearshore (SWAN) as surface boundary conditions for turbulence closure.Ocean state variables computed are sea level, velocity, temperature, and salinity. Also inclued are surface and bottom stresses, as well as vertical diffusivity of tracer and momentum.  The files uploaded here are examples of one time record from each of this dataset. Outputs for the full reanalysis, which comprises 14 Terabytes of data, are made available for download via a THREDDS (Thematic Real-time Environmental Distributed Data Services) web service to facilitate user geospatial or temporal sub-setting. The THREDDS catalog URLs and example filenames available here, for the respective collections, are: - 12 minute snapshots of the Doppio domain 2009-2015: https://tds.marine.rutgers.edu/thredds/roms/snaildel/catalog.html?dataset=snaildel_doppio_history - 12 minute snapshots of the Snaildel domain 2009-2015: https://tds.marine.rutgers.edu/thredds/roms/snaildel/catalog.html?dataset=snaildel_snaildel_history   Garwood, J. C., H. L. Fuchs, G. P. Gerbi, E. J. Hunter, R. J. Chant and J. L. Wilkin (2022). "Estuarine retention of larvae: Contrasting effects of behavioral responses to turbulence and waves." Limnol. Oceanogr. 67: 992-1005. Hunter, E. J., H. L. Fuchs, J. L. Wilkin, G. P. Gerbi, R. J. Chant and J. C. Garwood (2022). "ROMSPath v1.0: Offline Particle Tracking for the Regional Ocean Modeling System (ROMS)." Geosci. Model Dev. 15: 4297-4311. 
    more » « less
  2. Newton, Irene L. (Ed.)
    ABSTRACT Here, we present 36 metagenomes, 59 metatranscriptomes, and 373 metagenome-assembled genomes (MAGs) from Chesapeake and Delaware Bay water samples. This data set will be useful for studying microbial biogeochemical cycling in estuaries. 
    more » « less
  3. Dozois, Charles M. (Ed.)
    ABSTRACT Vibrio spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum , Dinophysis acuminata , Heterosigma akashiwo , and Chattonella subsalsa . Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO 4 − , total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO 4 − , TDP, NO 3 :NO 2 , NO 2 − , and NH 4 + ) was the best at detecting total ( tlh+ ) V. parahaemolyticus , suggesting that they are the prime drivers for the growth and distribution of pathogenic Vibrio spp. IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391–S395, 2012, https://doi.org/10.1093/cid/cis243 ). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j.foodres.2010.04.001 ; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817–825, 2013, https://doi.org/10.1007/s00248-012-0163-2 ; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, https://doi.org/10.1093/femsec/fiv121 ). Temperature and salinity are the two major factors affecting the distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, https://doi.org/10.3389/fmicb.2014.00256 ). However, Vibrio sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384–396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27–33, 2010, https://doi.org/10.1111/j.1758-2229.2009.00128.x ; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, https://doi.org/10.1002/mbo3.600 ). The expansion of Vibrio spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic Vibrio spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays. 
    more » « less