skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Wave Dynamics in Delaware Bay and Its Adjacent Coastal Shelf: WAVES IN DELAWARE BAY AND ADJACENT SHELF
Award ID(s):
1634578
PAR ID:
10046571
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
122
Issue:
11
ISSN:
2169-9275
Page Range / eLocation ID:
8683 to 8706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Newton, Irene L. (Ed.)
    ABSTRACT Here, we present 36 metagenomes, 59 metatranscriptomes, and 373 metagenome-assembled genomes (MAGs) from Chesapeake and Delaware Bay water samples. This data set will be useful for studying microbial biogeochemical cycling in estuaries. 
    more » « less
  2. null (Ed.)
    Abstract Ponds that form on sea ice can cause it to thin or break-up, which can promote calving from an adjacent ice shelf. Studies of sea ice ponds have predominantly focused on Arctic ponds formed by in situ melting/ponding. Our study documents another mechanism for the formation of sea ice ponds. Using Landsat 8 and Sentinel-2 images from the 2015–16 to 2018–19 austral summers, we analyze the evolution of sea ice ponds that form adjacent to the McMurdo Ice Shelf, Antarctica. We find that each summer, meltwater flows from the ice shelf onto the sea ice and forms large (up to 9 km 2 ) ponds. These ponds decrease the sea ice's albedo, thinning it. We suggest the added mass of runoff causes the ice to flex, potentially promoting sea-ice instability by the ice-shelf front. As surface melting on ice shelves increases, we suggest that ice-shelf surface hydrology will have a greater effect on sea-ice stability. 
    more » « less