skip to main content

Title: Physical Controls on Biogeochemical Processes in Intertidal Zones of Beach Aquifers: PHYSICAL CONTROLS ON BIOGEOCHEMISTRY
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Page Range / eLocation ID:
9225 to 9244
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Many studies in ecohydrology focusing on hydrologictransport argue that longer residence times across a stream ecosystem shouldconsistently result in higher biological uptake of carbon, nutrients, andoxygen. This consideration does not incorporate the potential forbiologically mediated reactions to be limited by stoichiometric imbalances.Based on the relevance and co-dependences between hydrologic exchange,stoichiometry, and biological uptake and acknowledging the limited amountof field studies available to determine their net effects on the retentionand export of resources, we quantified how microbial respiration iscontrolled by the interactions between and the supply of essential nutrients (C, N, and P)in a headwater stream in Colorado, USA. For this, we conducted two rounds ofnutrient experiments, each consisting of four sets of continuous injectionsof Cl− as a conservative tracer, resazurin as a proxy for aerobicrespiration, and one of the following nutrient treatments: (a) N, (b) N+C,(c) N+P, or (d) C+N+P. Nutrient treatments were considered to be knownsystem modifications that alter metabolism, and statistical tests helpedidentify the relationships between reach-scale hydrologic transport andrespiration metrics. We found that as discharge changed significantlybetween rounds and across stoichiometric treatments, (a) transient storagemainly occurred in pools lateral to the main channel and was proportional todischarge, and (b) microbial respiration remained similar between rounds andacross stoichiometric treatments. Our results contradict the notion thathydrologic transport alone is a dominant control on biogeochemicalprocessing and suggest that complex interactions between hydrology, resourcesupply, and biological community function are responsible for drivingin-stream respiration. 
    more » « less
  2. Abstract

    A region of exceptionally high macrofaunal benthic biomass exists in Barrow Canyon, implying a carbon export process that is locally concentrated. Here we offer an explanation for this benthic “hotspot” using shipboard data together with a set of dynamical equations. Repeat occupations of the Distributed Biological Observatory transect in Barrow Canyon reveal that when the northward flow is strong and the density front in the canyon is sharp, plumes of fluorescence and oxygen extend from the pycnocline to the seafloor in the vicinity of the hotspot. By solving the quasi‐geostrophic omega equation with an analytical flow field fashioned after the observations, we diagnose the vertical velocity in the canyon. This reveals that, as the along stream flow converges into the canyon, it drives a secondary circulation cell with strong downwelling on the cyclonic side of the northward flow. The downwelling quickly advects material from the pycnocline to the seafloor in a vertical plume analogous to those seen in the observations. The plume occurs only when the phytoplankton reside in the pycnocline, since the near‐surface vertical velocity is weak, also consistent with the observations. Using a wind‐based proxy to represent the strength of the northward flow and hence the pumping, in conjunction with a satellite‐derived phytoplankton source function, we construct a time series of carbon supply to the bottom of Barrow Canyon.

    more » « less
  3. Abstract

    The McMurdo Dry Valleys, Antarctica, are a polar desert populated with numerous closed‐watershed, perennially ice‐covered lakes primarily fed by glacial melt. Lake levels have varied by as much as 8 m since 1972 and are currently rising after a decade of decreasing. Precipitation falls as snow, so lake hydrology is dominated by energy available to melt glacier ice and to sublimate lake ice. To understand the energy and hydrologic controls on lake level changes and to explain the variability between neighboring lakes, only a few kilometers apart, we model the hydrology for the three largest lakes in Taylor Valley. We apply a physically based hydrological model that includes a surface energy balance model to estimate glacial melt and lake sublimation to constrain mass fluxes to and from the lakes. Results show that lake levels are very sensitive to small changes in glacier albedo, air temperature, and wind speed. We were able to balance the hydrologic budget in two watersheds using meltwater inflow and sublimation loss from the ice‐covered lake alone. A third watershed, closest to the coast, required additional inflow beyond model uncertainties. We hypothesize a shallow groundwater system within the active layer, fed by dispersed snow patches, contributes 23% of the inflow to this watershed. The lakes are out of equilibrium with the current climate. If the climate of our study period (1996–2013) persists into the future, the lakes will reach equilibrium starting in 2300, with levels 2–17 m higher, depending on the lake, relative to the 2020 level.

    more » « less
  4. Abstract

    High‐accuracy spectrophotometric pH measurements were taken during a summer cruise to study the pH dynamics and its controlling mechanisms in the northern Gulf of Mexico in hypoxia season. Using the recently available dissociation constants of the purified m‐cresol purple (Douglas & Byrne, 2017,; Müller & Rehder, 2018,, spectrophotometrically measured pH showed excellent agreement with pH calculated from dissolved inorganic carbon (DIC) and total alkalinity over a wide salinity range of 0 to 36.9 (0.005 ± 0.016,n= 550). The coupled changes in DIC, oxygen, and nutrients suggest that biological production of organic matter in surface water and the subsequent aerobic respiration in subsurface was the dominant factor regulating pH variability in the nGOM in summer. The highest pH values were observed, together with the maximal biological uptake of DIC and nutrients, at intermediate salinities in the Mississippi and Atchafalaya plumes where light and nutrient conditions were favorable for phytoplankton growth. The lowest pH values (down to 7.59) were observed along with the highest concentrations of DIC and apparent oxygen utilization in hypoxic bottom waters. The nonconservative pH changes in both surface and bottom waters correlated well with the biologically induced changes in DIC, that is, per 100‐μmol/kg biological removal/addition of DIC resulted in 0.21 unit increase/decrease in pH. Coastal bottom water with lower pH buffering capacity is more susceptible to acidification from anthropogenic CO2invasion but reduction in eutrophication may offset some of the increased susceptibility to acidification.

    more » « less