skip to main content


Title: Functional properties of chondrocytes and articular cartilage using optical imaging to scanning probe microscopy: FUNCTIONAL IMAGING OF CHONDROCYTES AND CARTILAGE
NSF-PAR ID:
10047062
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Orthopaedic Research
ISSN:
0736-0266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peer-Reviewed Abstract for Summer Biomechanics, Bioengineering and Biotransport Conference, June 25 -28, Seven Springs, PA, USA. 
    more » « less
  2. Abstract

    Tissue‐engineered cartilage has shown promising results in the repair of focal cartilage defects. However, current clinical techniques rely on an extra surgical procedure to biopsy healthy cartilage to obtain human chondrocytes. Alternatively, induced pluripotent stem cells (iPSCs) have the ability to differentiate into chondrocytes and produce cartilaginous matrix without the need to biopsy healthy cartilage. However, the mechanical properties of tissue‐engineered cartilage with iPSCs are unknown and might be critical to long‐term tissue function and health. This study used confined compression, cartilage on glass tribology, and shear testing on a confocal microscope to assess the macroscale and microscale mechanical properties of two constructs seeded with either chondrocyte‐derived iPSCs (Ch‐iPSCs) or native human chondrocytes. Macroscale properties of Ch‐iPSC constructs provided similar or better mechanical properties than chondrocyte constructs. Under compression, Ch‐iPSC constructs had an aggregate modulus that was two times larger than chondrocyte constructs and was closer to native tissue. No differences in the shear modulus and friction coefficients were observed between Ch‐iPSC and chondrocyte constructs. On the microscale, Ch‐iPSC and chondrocyte constructs had different depth‐dependent mechanical properties, neither of which matches native tissue. These observed depth‐dependent differences may be important to the function of the implant. Overall, this comparison of multiple mechanical properties of Ch‐iPSC and chondrocyte constructs shows that using Ch‐iPSCs can produce equivalent or better global mechanical properties to chondrocytes. Therefore, iPSC‐seeded cartilage constructs could be a promising solution to repair focal cartilage defects. The chondrocyte constructs used in this study have been implanted into humans for clinical trials. Therefore, Ch‐iPSC constructs could also be used clinically in place of the current chondrocyte construct.

     
    more » « less
  3. null (Ed.)
  4. Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison withT2andTmeasures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty‐two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren‐Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry andT2andTrelaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single‐slice acquisitions (p= 0.015). The average scan‐rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p= 0.655) or between healthy controls and OA subjects (p= 0.310).T2andTrelaxation times were elevated in OA subjects (p< 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = −0.181 and rho = −0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild‐moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.

     
    more » « less