skip to main content


Title: Influence of Exsolved Volatiles on Reheating Silicic Magmas by Recharge and Consequences for Eruptive Style at Volcán Quizapu (Chile): EXSOLVED VOLATILES AND MAGMA REHEATING
NSF-PAR ID:
10047097
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
18
Issue:
11
ISSN:
1525-2027
Page Range / eLocation ID:
4123 to 4135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Redox stabilities of the hydrogen electrode with in situ exsolved Fe–Ni nanoparticles from Sr 2 Fe 1.4 Ni 0.1 Mo 0.5 O 6−δ (SFMNi) perovskite are studied by analyzing the evolution of the phase composition and morphology during the redox cycles. It is found that certain amount of the exsolved nanoparticles have been oxidized to the transition metal oxide (Ni,Fe)O instead of reincorporating into the parent perovskite lattice upon re-oxidizing at 800 °C in air. However, the (Ni,Fe)O secondary phases show no adverse effect on the subsequent reduction treatment. The redox reversibility mechanism is explained by the regular-solution model. The electrodes are almost fully recovered in the reducing atmosphere, and the symmetrical cells measured under 9.7% H 2 –3% H 2 O–87.3% N 2 conditions show a stable specific area polarization resistance of around 1.93 Ω cm 2 at 800 °C during 13 redox cycles. Single cells using the Ni–Fe nanoparticles structured electrode exhibit a stable electrode polarization resistance of about 0.598 Ω cm 2 at 800 °C under open circuit voltage conditions and a steady electrolysis current density of about −653 mA cm −2 at 1.5 V during the steam electrolysis process over 5 redox cycles. These results indicate that the SFMNi material is a very promising electrode candidate for steam electrolysis application with robust redox reversibility. 
    more » « less
  2. Abstract

    Magmatic volatiles drive pressure, temperature, and compositional changes in upper crustal magma chambers and alter the physical properties of stored magmas. Previous studies suggest that magmatic H2O content influences the growth and longevity of silicic chambers through regulating the size and frequency of eruptions and impacting the crystallinity‐temperature curve. However, there has been comparatively little exploration of how CO2impacts the evolution of magma chambers despite the strong influence of CO2on H2O solubility and the high concentrations of CO2often present in mafic systems. In this study, we integrate the thermodynamic effects of dissolved and exsolved H2O and CO2with the mechanics of open‐system magma chambers that interact thermally and mechanically with the crust. We applied this model to investigate how intrinsic variations in magmatic H2O‐CO2content influence the growth and longevity of silicic and mafic magma chambers. Our findings indicate that even with a tenfold increase in CO2content (up to 10,000 ppm), CO2plays a minimal role in long‐term chamber growth and longevity. While CO2content affects the magma compressibility, the resulting changes in eruption mass are balanced out by a commensurate change in eruption frequency so that the time‐averaged eruptive flux and long‐term chamber behavior remain similar. In contrast, H2O content strongly influences chamber growth and longevity. In silicic systems, high H2O contents hinder magma chamber growth by increasing the total eruptive flux and steepening the slope of the crystallinity‐temperature curve. In mafic systems, high H2O contents promote magma chamber growth by flattening the slope of the crystallinity‐temperature curve.

     
    more » « less