skip to main content


Title: Structurally Diverse Divalent Metal Adamantanedicarboxylate Coordination Polymers with Hydrogen‐bonding Capable Dipyridyl Pillaring Ligands

Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2]·4.5H2O}n(1) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)]·H2O}n(2) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2]·H2O}n(3) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83etbnetwork topology. [Co(ada)(ebin)]n(4) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)]·2H2O}n(5) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound4revealed a decrease inχmTproduct upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g= 2.39(2) withD= 40(3) cm–1andJ= –3.55(4) cm–1]. Compounds1and5undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative1shows potential as a sensor for the solution‐phase detection of nitrobenzene andm‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed.

 
more » « less
PAR ID:
10047119
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Zeitschrift für anorganische und allgemeine Chemie
Volume:
644
Issue:
1
ISSN:
0044-2313
Page Range / eLocation ID:
p. 33-42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cocrystallizations of diboronic acids [1,3‐benzenediboronic acid (1,3‐bdba), 1,4‐benzenediboronic acid (1,4‐bdba) and 4,4’‐biphenyldiboronic acid (4,4’‐bphdba)] and bipyridines [1,2‐bis(4‐pyridyl)ethylene (bpe) and 1,2‐bis(4‐pyridyl)ethane (bpeta)] generated the hydrogen‐bonded 1 : 2 cocrystals [(1,4‐bdba)(bpe)2] (1), [(1,4‐bdba)(bpeta)2] (2), [(1,3‐bdba)(bpe)2(H2O)2] (3) and [(1,3‐bdba)(bpeta)2(H2O)] (4), wherein 1,3‐bdba involved hydrated assemblies. The linear extended 4,4’‐bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'‐bphdba)(bpe)] (5) and [(4,4'‐bphdba‐me)(bpeta)] (6). For 6, a hemiester was generated by an in‐situ linker transformation. Single‐crystal X‐ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen‐bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D‐to‐2D single‐crystal‐to‐single‐crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.

     
    more » « less
  2. Abstract

    Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

     
    more » « less
  3. Abstract

    The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1‐BR2‐2‐[(Me2N)2C=N]‐C6H4(36) [BR2=BMes2(3), BC12H8, (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X‐ray analysis. These novel types of pre‐organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via anortho‐phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds.4and5deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1‐(RC≡C‐BR2)‐2‐[(Me2N)2C=NH]‐C6H4(R=Ph, H) and reacted with ammonia, BnNH2and pyrrolidine, to generate the FLP adducts 1‐(R2HN→BR2)‐2‐[(Me2N)2C=NH]‐C6H4, where the N‐H functionality is activated by intramolecular H‐bond interactions. In addition,5was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise,5is capable of cleaving H2, HBPin and PhSiH3to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.

     
    more » « less
  4. Abstract

    With the intent to demonstrate that the charge of Z‐type ligands can be used to modulate the electrophilic character and catalytic properties of coordinated transition metals, we are now targeting complexes bearing polycationic antimony‐based Z‐type ligands. Toward this end, the dangling phosphine arm of ((o‐(Ph2P)C6H4)3)SbCl2AuCl (1) was oxidized with hydrogen peroxide to afford [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl2]+([2 a]+) which was readily converted into the dicationic complex [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl]2+([3]2+) by treatment with 2 equiv AgNTf2. Both experimental and computational results show that [3]2+possess a strong Au→Sb interaction reinforced by the dicationic character of the antimony center. The gold‐bound chloride anion of [3]2+is rather inert and necessitates the addition of excess AgNTf2to undergo activation. The activated complex, referred to as [4]2+[((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuNTf2]2+readily catalyzes both the polymerization and the hydroamination of styrene. This atypical reactivity underscores the strong σ‐accepting properties of the dicationic antimony ligand and its activating impact on the gold center.

     
    more » « less
  5. Abstract

    With the intent to demonstrate that the charge of Z‐type ligands can be used to modulate the electrophilic character and catalytic properties of coordinated transition metals, we are now targeting complexes bearing polycationic antimony‐based Z‐type ligands. Toward this end, the dangling phosphine arm of ((o‐(Ph2P)C6H4)3)SbCl2AuCl (1) was oxidized with hydrogen peroxide to afford [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl2]+([2 a]+) which was readily converted into the dicationic complex [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl]2+([3]2+) by treatment with 2 equiv AgNTf2. Both experimental and computational results show that [3]2+possess a strong Au→Sb interaction reinforced by the dicationic character of the antimony center. The gold‐bound chloride anion of [3]2+is rather inert and necessitates the addition of excess AgNTf2to undergo activation. The activated complex, referred to as [4]2+[((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuNTf2]2+readily catalyzes both the polymerization and the hydroamination of styrene. This atypical reactivity underscores the strong σ‐accepting properties of the dicationic antimony ligand and its activating impact on the gold center.

     
    more » « less