skip to main content


Title: High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset: HIGH-RESOLUTION PRECIPITATION MAPPING IN A MOUNTAINOUS WATERSHED
Award ID(s):
1637522
NSF-PAR ID:
10047308
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Climatology
Volume:
37
Issue:
supplement S1
ISSN:
0899-8418
Page Range / eLocation ID:
124 to 137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marco Borga ; Francesco Avanzi (Ed.)
  2. Abstract

    Snow dominated mountainous karst watersheds are the primary source of water supply in many areas in the western U.S. and worldwide. These watersheds are typically characterized by complex terrain, spatiotemporally varying snow accumulation and melt processes, and duality of flow and storage dynamics because of the juxtaposition of matrix (micropores and small fissures) and karst conduits. As a result, predicting streamflow from meteorological inputs has been challenging due to the inability of physically based or conceptual hydrologic models to represent these unique characteristics. We present a hybrid modeling approach that integrates a physically based, spatially distributed, snow model with a deep learning karst model. More specifically, the high‐resolution snow model captures spatiotemporal variability in snowmelt, and the deep learning model simulates the corresponding response of streamflow as influenced by complex surface and subsurface properties. The deep learning model is based on the Convolutional Long Short‐Term Memory (ConvLSTM) architecture capable of handling spatiotemporal recharge patterns and watershed storage dynamics. The hybrid modeling approach is tested on a watershed in northern Utah with seasonal snow cover and variably karstified carbonate bedrock. The hybrid models were able to simulate streamflow at the watershed outlet with high accuracy. The spatial and temporal recharge and discharge patterns learned by the ConvLSTM model were then examined and compared with known hydrogeologic information. Results suggest that ConvLSTM simulates streamflow with higher accuracy than reference models for the study area and provides insight into spatially influenced hydrologic responses that are unavailable within lumped modeling approaches.

     
    more » « less
  3. Abstract

    This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management.

     
    more » « less