A unique direct printing method is developed to additively pattern silver nanowires (AgNWs) with length of up to ≈40 µm. Uniform and well‐defined AgNW features are printed on various substrates by optimizing a series of parameters including ink composition, printing speed, nozzle size, substrate temperature, and hydrophobicity of the substrate surface. The capability of directly printing such long AgNWs is essential for stretchable electronics applications where mechanical compliance is required as manifested by a systematic study comparing the electrical and electromechanical performance of printed AgNW features with different nanowire lengths. Such printed AgNWs are used to demonstrate biaxially stretchable conductors, ultrasensitive capacitive pressure sensor arrays, and stretchable electroluminescent displays, indicating their great potential for applications in low‐cost wearable electronics. This strategy is adaptable to other material platforms like semiconducting nanowires, which may offer a cost‐effective entry to various nanowire‐based mechanically compliant sensory and optoelectronic systems.
more » « less- PAR ID:
- 10047377
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc . With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.more » « less
-
Abstract Direct disposal of used soft electronics into the environment can cause severe pollution to the ecosystem due to the inability of most inorganic materials and synthetic polymers to biodegrade. Additionally, the loss of the noble metals that are commonly used in soft electronics leads to a waste of scarce resources. Thus, there is an urgent need to develop “green” and sustainable soft electronics based on eco‐friendly manufacturing that may be recycled or biodegraded after the devices’ end of life. Here an approach to fabricating sustainable soft electronics is demonstrated where the expensive functional materials can be recycled and the soft substrate can be biodegradable. A stretchable agarose/glycerol gel film is used as the substrate, and silver nanowires (AgNWs) are printed on the film to fabricate the soft electronic circuits. The mechanical and chemical properties of the agarose/glycerol gel films are characterized, and the functionality of the printed AgNW electrodes for electrophysiological sensors is demonstrated. The demonstration of the biodegradability of the agarose/glycerol and the recyclability of AgNWs points toward ways to develop sustainable and eco‐friendly soft electronics.
-
Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.
-
Abstract There is an increasing demand for eco‐friendly and sustainable electronics, where recycling of functional materials is the key. Soft electronics have received much attention recently, however, their recycling has been challenging. Here a strategy is reported to recycle silver nanowire (AgNW) percolation network to achieve sustainable soft electronics. The effect of working solvent and ultrasonication time on the morphology and electrical properties of the recycled AgNW network is investigated. Using the selected working solvent with low surface tension (isopropanol) and optimal ultrasonication time (20 s), the AgNW network film can be recycled multiple times (four times in this work) without significant morphology changes and performance degradation. A transient epidermal sensor patch using AgNW as electrodes and a water‐soluble polymer substrate is fabricated and fully recycled. On‐body test of the epidermal sensor patch fabricated by recycled AgNWs demonstrates a working example for the recycling concept of AgNWs. The recycling concept can be extended to other nanomaterials in the form of percolation network.
-
Abstract This study describes the production of biodegradable and recyclable flexible electronic devices created by screen‐printing silver nanowires (AgNWs) onto regenerated cellulose films (RCFs). RCFs, derived from microcrystalline cellulose (MCC), are developed and further enhanced for flexibility with additives such as glycerol and poly(ethylene glycol) diglycidyl ether (PEGDE). The resulting cellulose films display relatively high tensile strength (up to 120 MPa), low Young's Modulus (down to 1500 MPa), and 90% optical transparency. Ink with AgNWs and poly(ethylene oxide) (PEO) as a binder is screen‐printed on regenerated cellulose films. The printed AgNWs patterns exhibit high electrical conductivity, excellent electromechanical performance, and strong interfacial adhesion with RCFs. To demonstrate the application of printed AgNWs on RCFs for soft electronics, transparent conductive electrodes (TCEs) are fabricated. Grid and honeycomb structures are printed separately and evaluated in terms of sheet resistance and optical transparency. TCEs with ≈80% transparency and very low sheet resistance (0.045 Ω sq−1) are obtained. Furthermore, enzymatic hydrolysis of the cellulose substrate and the recovery for reuse of the AgNWs are demonstrated, showing the potential of integrating natural polymers and recyclable nanomaterials for eco‐friendly and sustainable soft flexible electronics.