skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrasensitive Chemiluminescent Detection of Cathepsin B: Insights into the New Frontier of Chemiluminescent Imaging
Award ID(s):
1653474
PAR ID:
10047441
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
3
ISSN:
1433-7851
Page Range / eLocation ID:
p. 622-624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Next generation chemiluminescent iridium 1,2‐dioxetane complexes have been developed which consist of the Schaap's 1,2‐dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(μ‐Cl)]2(BTP=2‐(benzo[b]thiophen‐2‐yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2‐dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red‐shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern‐Volmer constants of 0.1 and 0.009 mbar−1for the carbon‐bound and sulfur compound, respectively. Lastly, the sulfur‐bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ∼106 p/s). 
    more » « less