skip to main content


Title: On the trace of random walks on random graphs: ON THE TRACE OF RANDOM WALKS ON RANDOM GRAPHS
NSF-PAR ID:
10047495
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Proceedings of the London Mathematical Society
Volume:
116
Issue:
4
ISSN:
0024-6115
Page Range / eLocation ID:
847 to 877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any $\varepsilon>0$ there exists $C>1$ such that the trace of the simple random walk of length $(1+\varepsilon)n\ln{n}$ on the random graph $G\sim\gnp$ for $p>C\ln{n}/n$ is, with high probability, Hamiltonian and $\Theta(\ln{n})$-connected. In the special case $p=1$ (i.e.\ when $G=K_n$), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the $k$'th time, the trace becomes $2k$-connected. 
    more » « less
  2. In this paper, we introduce a new, spectral notion of approximation between directed graphs, which we call singular value (SV) approximation. SV-approximation is stronger than previous notions of spectral approximation considered in the literature, including spectral approximation of Laplacians for undirected graphs [ST04], standard approximation for directed graphs [CKP + 17], and unit-circle (UC) approximation for directed graphs [AKM + 20]. Further, SV approximation enjoys several useful properties not possessed by previous notions of approximation, e.g., it is preserved under products of randomwalk matrices and bounded matrices. We provide a nearly linear-time algorithm for SV-sparsifying (and hence UC-sparsifying) Eulerian directed graphs, as well as ℓ-step random walks on such graphs, for any ℓ≤poly(n). Combined with the Eulerian scaling algorithms of [CKK + 18], given an arbitrary (not necessarily Eulerian) directed graph and a set S of vertices, we can approximate the stationary probability mass of the (S,Sc) cut in an ℓ-step random walk to within a multiplicative error of 1/polylog(n) and an additive error of 1/poly(n) in nearly linear time. As a starting point for these results, we provide a simple black-box reduction from SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs; such a directed-to-undirected reduction was not known for previous notions of spectral approximation. 
    more » « less